Skip to main content
Log in

Ischemic Preconditioning Alters the Epigenetic Profile of the Brain from Ischemic Intolerance to Ischemic Tolerance

  • Review
  • Published:
Neurotherapeutics

Abstract

Ischemic preconditioning is an innate neuroprotective mechanism in which a sub-injurious ischemic exposure increases the brain’s ability to withstand a subsequent, normally injurious ischemic insult. Part of ischemic preconditioning neuroprotection stems from an epigenetic reprogramming of the brain to a phenotype of ischemic tolerance, which results in a gene expression profile different from that observed in the non-injured and ischemia-injured brains. Such neuroprotective reprograming, activated by ischemic preconditioning, requires specific changes in DNA accessibility coordinated with activation of transcriptional activator and repressor proteins, which allows for expression of specific neuroprotective proteins despite a general repression of gene expression. In this review we examine the effects of injurious ischemia and ischemic preconditioning on the regulation of DNA methylation, histone post-translational modifications, and non-coding RNA expression. There is increasing interest in the role of epigenetics in disease pathobiology, and whether and how pharmacological manipulation of epigenetic processes may allow for ischemic neuroprotection. Therefore, a better understanding of the epigenomic determinants underlying the modulation of gene expression that lead to ischemic tolerance or cell death offers the promise of novel neuroprotective therapies that target global reprograming of genomic activity versus individual cellular signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006;59:467–477.

    Article  PubMed  Google Scholar 

  2. Iadecola C, Anrather J. Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 2011;14:1363–1368.

    Article  PubMed  CAS  Google Scholar 

  3. Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antiox Redox Signal 2011;14:1853–61.

    Article  CAS  Google Scholar 

  4. Barone FC, White RF, Spera PA, et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 1998;29:1937–1950.

    Article  PubMed  CAS  Google Scholar 

  5. Roth S, Li B, Rosenbaum PS, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci 1998;39:777–785.

    PubMed  CAS  Google Scholar 

  6. Benardete EA, Bergold PJ. Genomic analysis of ischemic preconditioning in adult rat hippocampal slice cultures. Brain Res 2009;1292:107–122.

    Article  PubMed  CAS  Google Scholar 

  7. Feng Z, Davis DP, Sasik R, Patel HH, Drummond JC, Patel PM. Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Res 2007;1177:103–123.

    Article  PubMed  CAS  Google Scholar 

  8. Prasad SS, Russell M, Nowakowska M, Williams A, Yauk C. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection. J Mol Neurosci 2012;47:322–339.

    Article  PubMed  CAS  Google Scholar 

  9. Stenzel-Poore MP, Stevens SL, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 2003;362:1028–1037.

    Article  PubMed  CAS  Google Scholar 

  10. Simon RP, Meller R, Zhou A, Henshall D. Can genes modify stroke outcome and by what mechanisms? Stroke 2012;43:286–291.

    Article  PubMed  Google Scholar 

  11. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433–440.

    Article  PubMed  CAS  Google Scholar 

  12. Langley B, Gensert JM, Beal MF, Ratan RR. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 2005;4:41–50.

    Article  PubMed  CAS  Google Scholar 

  13. Egger G, Jeong S, Escobar SG, et al. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. PNAS 2006;103:14080–14085.

    Article  PubMed  CAS  Google Scholar 

  14. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247–257.

    Article  PubMed  CAS  Google Scholar 

  15. Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke: part 1: DNA methylation and chromatin modifications. Arch Neurol 2010;67:1316–1322.

    Article  PubMed  Google Scholar 

  16. Endres M, Meisel A, Biniszkiewicz D, et al. DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 2000;20:3175–3181.

    PubMed  CAS  Google Scholar 

  17. Endres M, Fan G, Meisel A, Dirnagl U, Jaenisch R. Effects of cerebral ischemia in mice lacking DNA methyltransferase 1 in post-mitotic neurons. Neuroreport 2001;12:3763–3766.

    Article  PubMed  CAS  Google Scholar 

  18. Hu CJ, Chen SD, Yang DI, et al. Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. J Cereb Blood Flow Metab 2006;26:1519–1526.

    Article  PubMed  CAS  Google Scholar 

  19. Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol Aspects Medicine 2013;34:883–901.

    Article  CAS  Google Scholar 

  20. Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol 2004;61:1652–1661.

    Article  PubMed  Google Scholar 

  21. Williamson WD, Pinto I. Histones and genome integrity. Front Biosci 2012;17:984–995.

    Article  CAS  Google Scholar 

  22. Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Develop 2011;21:175–186.

    Article  CAS  Google Scholar 

  23. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–395.

    Article  PubMed  CAS  Google Scholar 

  24. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  25. Fessler EB, Chibane FL, Wang Z, Chuang DM. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Design 2013 Feb 19 [Epub ahead of print].

  26. Shimamura M, Sato N, Nakagami H, Taniyama Y, Morishita R. Development of nucleic acid drugs for neurological disorders. Curr Topics Med Chem 2012;12:1621–1629.

    Article  CAS  Google Scholar 

  27. Chen YT, Zang XF, Pan J, et al. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol 2012;39:751–758.

    Article  PubMed  Google Scholar 

  28. Noh KM, Hwang JY, Follenzi A, et al. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. PNAS 2012;109:E962-E971.

    Article  PubMed  CAS  Google Scholar 

  29. Faraco G, Pancani T, Formentini L, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 2006;70:1876–1884.

    Article  PubMed  CAS  Google Scholar 

  30. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004;89:1358–1367.

    Article  PubMed  CAS  Google Scholar 

  31. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004;66:899–908.

    Article  PubMed  CAS  Google Scholar 

  32. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.

    Article  PubMed  CAS  Google Scholar 

  33. Langley B, D'Annibale MA, Suh K, et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci 2008;28:163–176.

    Article  PubMed  CAS  Google Scholar 

  34. Yildirim F, Gertz K, Kronenberg G, et al. Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp Neurol 2008;210:531–542.

    Article  PubMed  CAS  Google Scholar 

  35. Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF. Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 2007;76:473–481.

    Article  PubMed  CAS  Google Scholar 

  36. Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 2011;31:1003–1019.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 2011;95:373–395.

    Article  PubMed  CAS  Google Scholar 

  38. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 2009;159:993–1002.

    Article  PubMed  CAS  Google Scholar 

  39. Raval AP, Dave KR, Perez-Pinzon MA. Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 2006;26:1141–1147.

    PubMed  CAS  Google Scholar 

  40. Yan W, Fang Z, Yang Q, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 2013;33:396–406.

    Article  PubMed  CAS  Google Scholar 

  41. Kakefuda K, Fujita Y, Oyagi A, et al. Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun 2009;387:784–788.

    Article  PubMed  CAS  Google Scholar 

  42. Nadtochiy SM, Yao H, McBurney MW, et al. SIRT1-mediated acute cardioprotection. American journal of physiology Heart Circ Physiol 2011;301:H1506-512.

    Article  CAS  Google Scholar 

  43. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795–800.

    Article  PubMed  CAS  Google Scholar 

  44. Kuno A, Hori YS, Hosoda R, et al. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J Biol Chem 2013;288:5963–5972.

    Article  PubMed  CAS  Google Scholar 

  45. Peng L, Yuan Z, Ling H, et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 2011;31:4720–4734.

    Article  PubMed  CAS  Google Scholar 

  46. Zocchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012;7:695–700.

    Article  PubMed  CAS  Google Scholar 

  47. Rana G, Donizetti A, Virelli G, et al. Cortical spreading depression differentially affects lysine methylation of H3 histone at neuroprotective genes and retrotransposon sequences. Brain Res 2012;1467:113–119.

    Article  PubMed  CAS  Google Scholar 

  48. Matsushima K, Schmidt-Kastner R, Hogan MJ, Hakim AM. Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 1998;807:47–60.

    Article  PubMed  CAS  Google Scholar 

  49. Ouyang J, Gill G. SUMO engages multiple corepressors to regulate chromatin structure and transcription. Epigenetics 2009;4:440–444.

    Article  PubMed  CAS  Google Scholar 

  50. Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007;9:1253–1262.

    Article  PubMed  CAS  Google Scholar 

  51. Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 2012;162:1–9.

    Article  PubMed  CAS  Google Scholar 

  52. Lee YJ, Miyake S, Wakita H, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab 2007;27:950–962.

    PubMed  CAS  Google Scholar 

  53. Dave KR, Anthony Defazio R, Raval AP, et al. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem 2009;110:1170–1179.

    Article  PubMed  CAS  Google Scholar 

  54. Dave KR, Prado R, Raval AP, Drew KL, Perez-Pinzon MA. The arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia. Stroke 2006;37:1261–1265.

    Article  PubMed  Google Scholar 

  55. Lee YJ, Castri P, Bembry J, Maric D, Auh S, Hallenbeck JM. SUMOylation participates in induction of ischemic tolerance. J Neurochem 2009;109:257–267.

    Article  PubMed  CAS  Google Scholar 

  56. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF. RNA regulation of epigenetic processes. BioEssays 2009;31:51–59.

    Article  PubMed  CAS  Google Scholar 

  57. Bernstein E, Allis CD. RNA meets chromatin. Genes Develop 2005;19:1635–1655.

    Article  PubMed  CAS  Google Scholar 

  58. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009;29:675–687.

    Article  PubMed  CAS  Google Scholar 

  59. Yin KJ, Deng Z, Hamblin M, et al. Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 2010;30:6398–6408.

    Article  PubMed  CAS  Google Scholar 

  60. Yin KJ, Deng Z, Huang H, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 2010;38:17–26.

    Article  PubMed  CAS  Google Scholar 

  61. Dharap A, Vemuganti R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem 2010;113:1685–1691.

    PubMed  CAS  Google Scholar 

  62. Lusardi TA, Farr CD, Faulkner CL, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab 2010;30:744–756.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants NS45676, NS054147 and NS34773 (to M.A.P.P), and NS073779 (to K.R.D.) and by a Postdoctoral award from the American Heart Association, Greater Southeast Affiliate (to J.W.T). The authors declare no competing financial interests. Full conflict of interest disclosures are available in the electronic supplementary materials for this article.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Thompson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1225 kb)

ESM 2

(PDF 1428 kb)

ESM 3

(PDF 1224 kb)

ESM 4

(PDF 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J.W., Dave, K.R., Young, J.I. et al. Ischemic Preconditioning Alters the Epigenetic Profile of the Brain from Ischemic Intolerance to Ischemic Tolerance. Neurotherapeutics 10, 789–797 (2013). https://doi.org/10.1007/s13311-013-0202-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0202-9

Keywords

Navigation