Skip to main content

Advertisement

Log in

Complement Peptide C3a Promotes Astrocyte Survival in Response to Ischemic Stress

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes are the most numerous cells in the central nervous system with a range of homeostatic and regulatory functions. Under normal conditions as well as after ischemia, astrocytes promote neuronal survival. We have previously reported that the complement-derived peptide C3a stimulates neuronal differentiation of neural progenitor cells and protects the immature brain tissue against hypoxic-ischemic injury. Here, we studied the effects of C3a on the response of mouse cortical astrocytes to ischemia. We have found that chemical ischemia, induced by combined inhibition of oxidative phosphorylation and glycolysis, upregulates the expression of C3a receptor in cultured primary astrocytes. C3a treatment protected wild-type but not C3a receptor-deficient astrocytes from cell death induced by chemical ischemia or oxygen-glucose deprivation by reducing ERK signaling and caspase-3 activation. C3a attenuated ischemia-induced upregulation of glial fibrillary acidic protein; however, the protective effects of C3a were not dependent on the presence of the astrocyte intermediate filament system. Pre-treatment of astrocytes with C3a during recovery abrogated the ischemia-induced neuroprotective phenotype of astrocytes. Jointly, these results provide the first evidence that the complement peptide C3a modulates the response of astrocytes to ischemia and increases their ability to cope with ischemic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bélanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    PubMed  PubMed Central  Google Scholar 

  2. de Pablo Y, Nilsson M, Pekna M, Pekny M (2013) Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol 140(1):81–91

    Article  PubMed  Google Scholar 

  3. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098

    Article  PubMed  Google Scholar 

  4. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    Article  CAS  PubMed  Google Scholar 

  5. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10(11):1377–1386

    Article  CAS  PubMed  Google Scholar 

  6. Miklic S, Juric DM, Carman-Krzan M (2004) Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 22(3):119–130

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A et al (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28(3):468–481

    Article  PubMed  Google Scholar 

  8. Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C, Renner O, Bushong E et al (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24(21):5016–5021

    Article  CAS  PubMed  Google Scholar 

  9. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  11. Berg A, Zelano J, Stephan A, Thams S, Barres BA, Pekny M, Pekna M, Cullheim S (2012) Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3. Exp Neurol 237(1):8–17

    Article  PubMed  Google Scholar 

  12. Perez-Alcazar M, Daborg J, Stokowska A, Wasling P, Björefeldt A, Kalm M, Zetterberg H, Carlström KE et al (2014) Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp Neurol 253:154–164

    Article  PubMed  Google Scholar 

  13. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, Zwirner JW RA, Gerard C et al (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J 25(6):1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong B, Pan Y, Zhao W, Knable L, Vempati P, Begum S, Ho L, Wang J et al (2013) IVIG immunotherapy protects against synaptic dysfunction in Alzheimer’s disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol Immunol 56(4):619–629

    Article  CAS  PubMed  Google Scholar 

  15. Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR (1999) Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia 26(3):201–211

    Article  CAS  PubMed  Google Scholar 

  16. Shinjyo N, Ståhlberg A, Dragonow M, Pekny M, Pekna M (2009) Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells in vitro. Stem Cells 27:2824–2832

    Article  CAS  PubMed  Google Scholar 

  17. Järlestedt K, Rousset CI, Ståhlberg A, Sourkova H, Atkins AL, Thornton C, Barnum SR, Wetsel RA et al (2013) Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J 27(9):3797–3804

    Article  PubMed  Google Scholar 

  18. van Beek J, Bernaudin M, Petit E, Gasque P, Nouvelot A, MacKenzie ET, Fontaine M (2000) Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp Neurol 161(1):373–382

    Article  PubMed  Google Scholar 

  19. Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C et al (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145(3):503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274(34):23996–24006

    Article  CAS  PubMed  Google Scholar 

  21. Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A, Betsholtz C (1998) GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 239(2):332–343

  22. Uliasz TF, Hamby ME, Jackman NA, Hewett JA, Hewett SJ (2012) Generation of primary astrocyte cultures devoid of contaminating microglia. Methods Mol Biol 814:61–79

  23. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415

    Article  CAS  PubMed  Google Scholar 

  24. Harari OA, Liao JK (2010) NF-kB and innate immunity in ischemic stroke. Ann N Y Acad Sci 1207:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh N, Sharma G, Mishra V (2012) Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 32(4):491–507

    Article  CAS  PubMed  Google Scholar 

  26. Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130

    Article  CAS  PubMed  Google Scholar 

  27. Pekny M, Lane EB (2007) Intermediate filaments and stress. Exp Cell Res 313(10):2244–2254

    Article  CAS  PubMed  Google Scholar 

  28. Tokumine J, Kakinohana O, Cizkova D, Smith DW, Marsala M (2003) Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat. J Neurosci Res 74(4):552–561

    Article  CAS  PubMed  Google Scholar 

  29. Pechan PA, Chowdhury K, Seifert W (1992) Free radicals induce gene expression of NGF and bFGF in rat astrocyte culture. Neuroreport 3(6):469–472

    Article  CAS  PubMed  Google Scholar 

  30. van Beek J, Nicole O, Ali C, Ischenko A, MacKenzie ET, Buisson A, Fontaine M (2001) Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. Neuroreport 12(2):289–293

    Article  PubMed  Google Scholar 

  31. Boos L, Szalai AJ, Barnum SR (2005) C3a expressed in the central nervous system protects against LPS-induced shock. Neurosci Lett 387(2):68–71

    Article  CAS  PubMed  Google Scholar 

  32. Gürer G, Gursoy-Ozdemir Y, Erdemli E, Can A, Dalkara T (2009) Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol 19(4):630–641

    Article  PubMed  Google Scholar 

  33. Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319(3):991–997

    Article  CAS  PubMed  Google Scholar 

  34. Sayah S, Jauneau AC, Patte C, Tonon MC, Vaudry H, Fontaine M (2003) Two different transduction pathways are activated by C3a and C5a anaphylatoxins on astrocytes. Brain Res Mol Brain Res 112(1–2):53–60

    Article  CAS  PubMed  Google Scholar 

  35. Jauneau AC, Ischenko A, Chan P, Fontaine M (2003) Complement component anaphylatoxins upregulate chemokine expression by human astrocytes. FEBS Lett 537(1–3):17–22

    Article  CAS  PubMed  Google Scholar 

  36. Sayah S, Ischenko AM, Zhakhov A, Bonnard AS, Fontaine M (1999) Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: specific increase in interleukin-6 mRNA expression. J Neurochem 72(6):2426–2436

    Article  CAS  PubMed  Google Scholar 

  37. Jauneau AC, Ischenko A, Chatagner A, Benard M, Chan P, Schouft MT, Patte C, Vaudry H et al (2006) Interleukin-1beta and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes. J Neuroinflammation 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Terai K, Matsuo A, McGeer EG, McGeer PL (1996) Enhancement of immunoreactivity for NF-kappa B in human cerebral infarctions. Brain Res 739(1–2):343–349

    Article  CAS  PubMed  Google Scholar 

  39. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J et al (2015) NFkB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115

    Article  CAS  PubMed  Google Scholar 

  40. Martin CB, Ingersoll SA, Martin BK (2007) Transcriptional control of the C3a receptor gene in glial cells: dependence upon AP-1 but not Ets. Mol Immunol 44(5):703–712

    Article  CAS  PubMed  Google Scholar 

  41. Michiels C, Minet E, Michel G, Mottet D, Piret JP, Raes M (2001) HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: role of MAP kinases. IUBMB Life 52(1–2):49–53

    Article  CAS  PubMed  Google Scholar 

  42. Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB et al (2004) NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol Cell Biol 24(17):7806–7819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F (2009) The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev 62(1):99–108

    Article  CAS  PubMed  Google Scholar 

  44. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172–C1180

    CAS  PubMed  Google Scholar 

  45. Ebert BJ, Firth JD, Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem 270:29083–29089

    Article  CAS  PubMed  Google Scholar 

  46. Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70(2):699–707

    Article  CAS  PubMed  Google Scholar 

  47. Ibáñez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35(3):431–440

    Article  PubMed  Google Scholar 

  48. Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y (1998) Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke 29(8):1687–1696

    Article  CAS  PubMed  Google Scholar 

  49. Rynkowski MA, Kim GH, Garrett MC, Zacharia BE, Otten ML, Sosunov SA, Komotar RJ, Hassid BG et al (2009) C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 29(1):98–107

    Article  CAS  PubMed  Google Scholar 

  50. Ducruet AF, Hassid BG, Mack WJ, Sosunov SA, Otten ML, Fusco DJ, Hickman ZL, Kim GH et al (2008) C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab 28(5):1048–1058

    Article  CAS  PubMed  Google Scholar 

  51. Ducruet AF, Zacharia BE, Sosunov SA, Gigante PR, Yeh ML, Gorski JW, Otten ML, Hwang RY et al (2012) Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS One 7(6):e38664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mathieu MC, Sawyer N, Greig GM, Hamel M, Kargman S, Ducharme Y, Lau CK, Friesen RW et al (2005) The C3a receptor antagonist SB 290157 has agonist activity. Immunol Lett 100(2):139–145

    Article  CAS  PubMed  Google Scholar 

  53. Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M (2014) Beneficial effects of GFAP/Vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62(12):2022–2033

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ding M, Eliasson C, Betsholtz C, Hamberger A, Pekny M (1998) Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res 62(1):77–81

    Article  CAS  PubMed  Google Scholar 

  55. Menet V, Prieto M, Privat A, Giménez Y, Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci U S A 100(15):8999–9004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cho KS, Yang L, Lu B, Feng Ma H, Huang X, Pekny M, Chen DF (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118(Pt 5):863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kinouchi R, Takeda M, Yang L, Wilhelmsson U, Lundkvist A, Pekny M, Chen DF (2003) Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci 6(8):863–868

    Article  CAS  PubMed  Google Scholar 

  58. Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS, Pekny M (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25(10):2619–2627

    Article  CAS  PubMed  Google Scholar 

  59. Larsson A, Wilhelmsson U, Pekna M, Pekny M (2004) Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP (−/−) Vim (−/−) mice. Neurochem Res 29(11):2069–2073

    Article  CAS  PubMed  Google Scholar 

  60. Wilhelmsson U, Faiz M, de Pablo Y, Sjöqvist M, Andersson D, Widestrand A, Potokar M, Stenovec M et al (2012) Astrocytes negatively regulate neurogenesis through the JAGGED1-mediated notch pathway. Stem Cells 30(10):2320–2329

    Article  CAS  PubMed  Google Scholar 

  61. Järlestedt K, Rousset CI, Faiz M, Wilhelmsson U, Ståhlberg A, Sourkova H, Pekna M, Mallard C et al (2010) Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 5(4):e10397

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yeo S, Bandyopadhyay S, Messing A, Brenner M (2013) Transgenic analysis of GFAP promoter elements. Glia 61(9):1488–1499

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M et al (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48(6):2760–2768

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Medical Research Council (project 11548 and 20116), AFA Research Foundation, ALF Göteborg (project 11392 and 142821), Sten A. Olsson Foundation for Research and Culture, Söderberg Foundations, Hjärnfonden, Hagströmer’s Foundation Millennium, the Swedish Stroke Foundation, the Free Mason Foundation, Amlöv’s Foundation, E. Jacobson’s Donation Fund, the EU FP 7 Program TargetBraIn (279017), and NanoNet COST Action (BM1002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milos Pekny or Marcela Pekna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinjyo, N., de Pablo, Y., Pekny, M. et al. Complement Peptide C3a Promotes Astrocyte Survival in Response to Ischemic Stress. Mol Neurobiol 53, 3076–3087 (2016). https://doi.org/10.1007/s12035-015-9204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9204-4

Keywords

Navigation