Skip to main content

Advertisement

Log in

Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68 % resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de la Torre JC (2012) A turning point for Alzheimer’s disease? Biofactors 38(2):78–83. doi:10.1002/biof.200

    Article  PubMed  Google Scholar 

  2. Bussey TJ, Wise SP, Murray EA (2001) The role of ventral and orbital PFC in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav Neurosci 115(5):971–982

    Article  CAS  PubMed  Google Scholar 

  3. Otten LJ, Rugg MD (2001) Task-dependency of the neural correlates of episodic encoding as measured by fMRI. Cereb Cortex 11:1150–1160

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki T, Nishiyama K, Murayama S, Yamamoto A, Sato S, Kanazawa I, Sakaki Y (1996) Regional and cellular presenilin 1 gene expression in human and rat tissues. Biochem Biophys Res Commun 219:708–713

    Article  CAS  PubMed  Google Scholar 

  5. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  6. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  CAS  PubMed  Google Scholar 

  7. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23:7577–7585

    CAS  PubMed  Google Scholar 

  8. Malhotra JD, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103:1303–1310

    Article  CAS  PubMed  Google Scholar 

  9. Vijayaragavan K, Powell AJ, Kinghorn IJ, Chahine M (2004) Role of auxiliary beta1-, beta2-, and beta3-subunits and their interaction with Na(v)1.8 voltage-gated sodium channel. Biochem Biophys Res Commun 319:531–540

    Article  CAS  PubMed  Google Scholar 

  10. O’Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL (2008) Loss of Na(+) channel beta2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci 40:143–155. doi:10.1016/j.mcn.2008.10.001

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bechtold DA, Smith KJ (2005) Sodium-mediated axonal degeneration in inflammatory demyelinating disease. J Neurol Sci 233:27–35

    Article  CAS  PubMed  Google Scholar 

  12. Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    Article  CAS  PubMed  Google Scholar 

  13. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing 17:183–194

    Article  CAS  Google Scholar 

  14. Nakahara H, Kanno T, Inai Y, Utsumi K, Hiramatsu M, Mori A, Packer L (1998) Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic Biol Med 124:85–92

    Article  Google Scholar 

  15. Yagi H, Katoh S, Akiguchi I, Takeda T (1988) Age-related deterioration of ability of acquisition in memory and learning in senescence accelerated mouse: SAM-P/8 as an animal model of disturbances in recent memory. Brain Res 474:86–93

    Article  CAS  PubMed  Google Scholar 

  16. Morris RGM (1984) Development of a water maze producer for studying spatial learning in the rats. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  17. Hebda-Bauer EK, Luo J, Watson SJ, Akil H (2007) Female CREB alphadelta-deficient mice show earlier age-related cognitive deficits than males. Neuroscience 150:260–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pouzet B, Zhang WN, Feldon J, Rawlins JN (2002) Hippocampal lesioned rats are able to learn a spatial position using non-spatial strategies. Behav Brain Res 133(2):279–291

    Article  PubMed  Google Scholar 

  19. Zhang HT, Li LY, Zou XL, Song XB, Hu YL, Feng ZT, Wang TT (2007) Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains. J Histochem Cytochem 55(1):1–19

    Article  PubMed  Google Scholar 

  20. Hoffman AN, Krigbaum A, Ortiz JB, Mika A, Hutchinson KM, Bimonte-Nelson HA, Conrad CD (2011) Recovery after chronic stress with in spatial reference and working memory domains: correspondence with hippocampal morphology. Eur J Neurosci 34:1023–1030

    Article  CAS  PubMed  Google Scholar 

  21. Skup M, Dwornik A, Macias M, Sulejczak D, Wiater M, Czarkowska-Bauch J (2002) Long-term locomotor training up-regulates TrkB(FL) receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurons in the spinal cord. Exp Neurol 176:289–307

    Article  CAS  PubMed  Google Scholar 

  22. Xiyang YB, Liu S, Liu J, Hao CG, Wang ZJ, Ni W, Wang XY, Wang TH (2009) Roles of platelet-derived growth factor-B expression in the ventral horn and motor cortex in the spinal cord-hemisected rhesus monkey. J Neurotrauma 26(2):275–287

    Article  PubMed  Google Scholar 

  23. Jaslove SW (1992) The integrative properties of spiny distal dendrites. Neuroscience 47:495–519

    Article  CAS  PubMed  Google Scholar 

  24. Tao WJ, Shen YS, Liu RJ, Zhao LN (2005) Anti-aging action of glycoconjugate from Gastrodia elata on mice and fruit-flies. J Biol 22:24–26

    CAS  Google Scholar 

  25. Liao QB, Liu XQ, Liu JP, Zhang YX, Nie FY, Zou K (2006) Relationship between antioxidant activity and gastrodin content of Gastrodia elata Blume. J China Three Gorges Univ Nat Sci 28:80–82

    CAS  Google Scholar 

  26. Liu W, Wu QF, Li H, Zuo J (2002) Preventing effects of PNS on SK-N-SH cell damage induced by glycoprival culture. Shanghai J Tradit Chin Med 36:46–49

    Google Scholar 

  27. Liu S, Fu Z (2005) The clinical application and the effects on immunoregulation of the Astragalus mongholicus. Chin J Basic Med Tradit Chin Med 18:203–205

    Google Scholar 

  28. Wang P, Zhang Z, Ma X, Huang Y, Liu X, Tu P, Tong T (2003) HDTIC-1 and HDTIC-2, two compounds extracted from Astragali Radix, delay replicative senescence of human diploid fibroblasts. Mech Ageing Dev 124:10–12

    Google Scholar 

  29. Zhao LF, Zheng YS, Piao HS, Zhang SY (2006) Antisenility effects of astragalus polysaccharide and total ginsenoside on senile mice. J Med Sci Yanbian Univ 29:249–251

    CAS  Google Scholar 

  30. Strazielle C, Jazi R, Verdier Y, Qian S, Lalonde R (2009) Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer’s disease: correlations with behavior and oxidative stress. Neurochem Int 55:806–814. doi:10.1016/j.neuint.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  31. Atamna H, Kumar R (2010) Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. J Alzheimers Dis 20(Suppl 2):S439–S452. doi:10.3233/JAD-2010-100414

    PubMed  Google Scholar 

  32. Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  CAS  PubMed  Google Scholar 

  33. Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience 88:1015–1032

    Article  CAS  PubMed  Google Scholar 

  34. Ceda GP, Dall’Aglio E, Maggio M, Lauretani F, Bandinelli S, Falzoi C, GrimaldiW CG, Corradi F, Ferrucci L, Valenti G, Hoffman AR (2005) Clinical implications of the reduced activity of the GH-IGF-I axis in older men. J Endocrinol Investig 28:96–100

    CAS  Google Scholar 

  35. Schulte-Herbrüggen O, Eckart S, Deicke U, Kühl A, Otten U, Danker-Hopfe H, Abramowski D, Staufenbiel M, Hellweg R (2008) Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice. J Neurosci Res 86(12):2774–2783. doi:10.1002/jnr.21704

    Article  PubMed  Google Scholar 

  36. Cheng B, Mattson MP (1992) Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: prevention by NGF and bFGF. Exp Neurol 117:114–123

    Article  CAS  PubMed  Google Scholar 

  37. Kiprianova I, Schindowski K, von Bohlen und Halbach O, Krause S, Dono R, Schwaninger M, Unsicker K (2004) Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp Neurol 189:252–260

    Article  CAS  PubMed  Google Scholar 

  38. Johnson-Farley NN, Patel K, Kim D, Cowen DS (2007) Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Res 18:40–49

    Article  Google Scholar 

  39. Stieber A, Mourelatos Z, Gonatas NK (1996) In Alzheimer’s disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am J Pathol 148:415–426

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Hanneken A, Frautschy S, Galasko D, Baird A (1995) A fibroblast growth factor binding protein in human cerebral spinal fluid. Neuroreport 6:886–888

    Article  CAS  PubMed  Google Scholar 

  41. Rohe M, Synowitz M, Glass R, Paul SM, Nykjaer A, Willnow TE (2009) Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression. J Neurosci 29(49):15472–15478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Seng Kee Leong for his valuable comments in the writing of this manuscript. This work is supported by Key Project of the Applied Basic Research Programs of Yunnan Province in China (Grant No. 2012F001), as well as the Special Fund of the Applied Basic Research Programs of Yunnan Province associated with Kunming Medical University in China (Grant No. 2013FB116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-Feng Zhang or Ting-Hua Wang.

Additional information

Yan-Bin XiYang, You-Cui Wang, Lian-Feng Zhang, and Ting-Hua Wang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 105 kb)

Online Resource 2

(GIF 63 kb)

High Resolution (TIFF 2585 kb)

Online Resource 3

(GIF 146 kb)

High Resolution (TIFF 1802 kb)

Online Resource 4

(GIF 439 kb)

High Resolution (TIFF 16925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

XiYang, YB., Wang, YC., Zhao, Y. et al. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2. Mol Neurobiol 53, 955–967 (2016). https://doi.org/10.1007/s12035-014-9048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9048-3

Keywords

Navigation