Skip to main content
Log in

MiR-219 Protects Against Seizure in the Kainic Acid Model of Epilepsy

  • Original Paper
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emerging evidence indicates that certain microRNAs (miRNAs) play important roles in epileptogenesis. MiR-219 is a brain-specific miRNA and has been shown to negatively regulate the function of N-methyl-d-aspartate (NMDA) receptors by targeting Ca2+/calmodulin-dependent protein kinase II (CaMKII)γ. Herein, we found that the level of miR-219 was decreased in both the kainic acid (KA)-induced epilepsy model and in cerebrospinal fluid specimens of epilepsy patients. Importantly, silencing of miR-219 by its antagomir in vivo resulted in seizure behaviors, abnormal cortical electroencephalogram (EEG) recordings in the form of high-amplitude and high-frequency discharges, and increased levels of CaMKIIγ and an NMDA receptor component, NR1, in a pattern similar to that found in KA-treated mice. Moreover, treatments with the miR-219 agomir in vivo alleviated seizures, abnormal EEG recordings, and decreased levels of CaMKIIγ and NR1 in KA-treated mice. Furthermore, treatment with MK-801, an antagonist of NMDA receptors, significantly alleviated abnormal EEG recordings induced by miR-219 antagomir. Together, these results demonstrate that miR-219 plays a crucial role in suppressing seizure formation in experimental models of epilepsy through modulating the CaMKII/NMDA receptor pathway and that miR-219 supplement may be a potential anabolic strategy for ameliorating epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  2. Dogini DB, Avansini SH, Vieira AS, Lopes-Cendes I (2013) MicroRNA regulation and dysregulation in epilepsy. Front Cell Neurosci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10:837–841

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Henshall DC (2013) Antagomirs and microRNA in status epilepticus. Epilepsia Suppl 6:17–19

    Article  Google Scholar 

  5. Jimenez-Mateos EM, Henshall DC (2013) Epilepsy and microRNA. Neuroscience 238:218–229

    Article  CAS  PubMed  Google Scholar 

  6. Tan CL, Plotkin JL, Ven MT, von Schimmelmann M, Feinberg P, Mann S, Handler A, Kjems J, Surmeier DJ, O’Carroll D, Greengard P, Schaefer A (2013) MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science 342(6163):1254–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F, Yin F (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50(2):291–297

    Article  CAS  PubMed  Google Scholar 

  8. Manna I, Labate A, Mumoli L, Pantusa M, Ferlazzo E, Aguglia U, Quattrone A, Gambardella A (2013) Relationship between genetic variant in pre-microRNA-146a and genetic predisposition to temporal lobe epilepsy: a case-control study. Gene 516(1):181–183

    Article  CAS  PubMed  Google Scholar 

  9. Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, Long LL, Feng L, Li Y, Xiao B (2012) MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci 13:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, Engel T, McKiernan RC, Mouri G, Tanaka K, Sano T, Saugstad JA, Simon RP, Stallings RL, Henshall DC (2011) miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol 179(5):2519–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, Sano T, O’Tuathaigh C, Waddington JL, Prenter S, Delanty N, Farrell MA, O’Brien DF, Conroy RM, Stallings RL, DeFelipe J, Henshall DC (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18(7):1087–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC (2012) MicroRNA-34a upregulation during seizure induced neuronal death. Cell Death Dis 3:e287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18(3):297–300

    Article  CAS  PubMed  Google Scholar 

  15. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65(5):597–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hudish LI, Blasky AJ, Appel B (2013) miR-219 regulates neural precursor differentiation by direct inhibition of apical par polarity proteins. Dev Cell 27(4):387–398

    Article  CAS  PubMed  Google Scholar 

  17. Ebrahimi-Barough S, Kouchesfehani HM, Ai J, Mahmoodinia M, Tavakol S, Massumi M (2013) Programming of human endometrial-derived stromal cells (EnSCs) into pre-oligodendrocyte cells by overexpression of miR-219. Neurosci Lett 537:65–70

    Article  CAS  PubMed  Google Scholar 

  18. Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, Sales N, Willoughby D, Elmen J, Hansen HF, Orum H, Kauppinen S, Kenny PJ, Wahlestedt C (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci U S A 106(9):3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu W, Zheng H, Shao X, Wang W, Yao Q, Li Z (2010) Excitotoxicity of TNFalpha derived from KA activated microglia on hippocampal neurons in vitro and in vivo. J Neurochem 114:386–396

    Article  CAS  PubMed  Google Scholar 

  20. Buckmaster PS, Lew FH (2011) Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 31(6):2337–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  22. Tchekalarova J, Pechlivanova D, Itzev D, Lazarov N, Markova P, Stoynev A (2010) Diurnal rhythms of spontaneous recurrent seizures and behavioural alterations of Wistar and spontaneously hypertensive rats in kainate model of epilepsy. Epilepsy Behav 17(1):23–32

    Article  PubMed  Google Scholar 

  23. Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, Garcia-Cairasco N, Bueno-Junior LS, Leite JP (2014) Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 10:1693–1705

    Article  PubMed  PubMed Central  Google Scholar 

  24. Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35(10):607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suen PC, Suen PC, Wu K, Xu JL, Lin SY, Levine ES, Black IB (1998) NMDA receptor subunits in the postsynaptic density of rat brain: expression and phosphorylation by endogenous protein kinases. Brain Res Mol Brain Res 59:215–228

    Article  CAS  PubMed  Google Scholar 

  26. Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M (2002) Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36:507–519

    Article  CAS  PubMed  Google Scholar 

  27. Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou X, Zheng F, Moon C, Schlüter OM, Wang H (2012) Bi-directional regulation of CaMKIIα phosphorylation at Thr286 by NMDA receptors in cultured cortical neurons. J Neurochem 122(2):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perlin JB, Churn SB, Lothman EW, DeLorenzo RJ (1992) Loss of type II calcium/calmodulin-dependent kinase activity correlates with stages of development of electrographic seizures in status epilepticus in rat. Epilepsy Res 11:111–118

    Article  CAS  PubMed  Google Scholar 

  30. McNamara JO, Huang YZ, Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 356: re12. Review

  31. Deutsch SI, Burket JA, Cannon WR, Jacome LF (2011) Selective mGluR5 antagonism attenuates the stress-induced reduction of MK-801’s antiseizure potency in the genetically inbred Balb/c mouse. Epilepsy Behav 21(4):352–355

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Zhengli Li for the helpful discussion of the manuscript. This work was supported by grants from the Natural Science Research Foundation of China (81100842, 81225008, 81271895, 81161120496, 91332112, and 91332114) and by the Natural Science Foundation of Fujian Province of China (No. 2012J01418). This work was also supported by the Foundation of Xiamen Science and Technology Bureau (No. 2011S0351).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-wu Zhang or Weihong Zheng.

Additional information

Honghua Zheng and Rong Tang contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Tang, R., Yao, Y. et al. MiR-219 Protects Against Seizure in the Kainic Acid Model of Epilepsy. Mol Neurobiol 53, 1–7 (2016). https://doi.org/10.1007/s12035-014-8981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8981-5

Keywords

Navigation