Skip to main content
Log in

Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pintér AB, Hock A, Kajtár P, Dóber I (2003) Long-term follow-up of cancer in neonates and infants: a national survey of 142 patients. Pediatr Surg Int 19(4):233–239

    Article  PubMed  Google Scholar 

  2. Kataria H, Wadhwa R, Kaul SC, Kaur G (2013) Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas. PLoS ONE 8(1):e55316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sukumari-Ramesh S, Bentley JN, Laird MD, Singh N, Vender JR, Dhandapani KM (2011) Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int J Dev Neurosci 29(7):701–710

    Article  CAS  PubMed  Google Scholar 

  4. Dhandapani KM, Mahesh VB, Brann DW (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 102(2):522–538

    Article  CAS  PubMed  Google Scholar 

  5. Katsargyris A, Tampaki EC, Giaginis C, Theocharis S (2012) Cranberry as promising natural source of potential anticancer agents: current evidence and future perspectives. Anticancer Agents Med Chem 12(6):619–630, Review

    Article  CAS  PubMed  Google Scholar 

  6. Prasad R, Katiyar SK (2012) Bioactive phytochemical proanthocyanidins inhibit growth of head and neck squamous cell carcinoma cells by targeting multiple signaling molecules. PLoS ONE 7(9):e46404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saha S, Ghosh S (2012) Tinospora cordifolia: one plant, many roles. Anc Sci Life 31(4):151–159

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leyon PV, Kuttan G (2004) Inhibitory effect of a polysaccharide from Tinospora cordifolia on experimental metastasis. J Ethnopharmacol 90(2–3):233–237

    Article  CAS  PubMed  Google Scholar 

  9. Jagetia GC, Rao SK (2006) Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice. Biol Pharm Bull 29(3):460–466

    Article  CAS  PubMed  Google Scholar 

  10. Thippeswamy G, Sheela ML, Salimath BP (2008) Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur J Pharmacol 588(2–3):141–150

    Article  CAS  PubMed  Google Scholar 

  11. Rao SK, Rao PS (2010) Alteration in the radiosensitivity of HeLa cells by dichloromethane extract of guduchi (Tinospora cordifolia). Integr Cancer Ther 9(4):378–384

    Article  CAS  PubMed  Google Scholar 

  12. Goel HC, Prem Kumar I, Rana SVS (2002) Free radical scavenging and metal chelation by Tinospora cordifolia, a possible role in radioprotection. Indian J Exp Biol 40(6):727–734

    CAS  PubMed  Google Scholar 

  13. Dhanasekaran M, Baskar AA, Ignacimuthu S, Agastian P, Duraipandiyan V (2009) Chemopreventive potential of Epoxy clerodane diterpene from Tinospora cordifolia against diethylnitrosamine-induced hepatocellular carcinoma. Investig New Drugs 27(4):347–355

    Article  CAS  Google Scholar 

  14. Hamsa TP, Kuttan G (2012) Tinospora cordifolia ameliorates urotoxic effect of cyclophosphamide by modulating GSH and cytokine levels. Exp Toxicol Pathol 64(4):307–314

    Article  CAS  PubMed  Google Scholar 

  15. Patel A, Bigoniya P, Singh CS, Patel NS (2013) Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside-A.Indian. J Pharmacol 45(3):237–243

    Google Scholar 

  16. Singh RP, Banerjee S, Kumar PV, Raveesha KA, Rao AR (2006) Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice. Phytomedicine 13(1–2):74–84

    Article  CAS  PubMed  Google Scholar 

  17. Subramanian M, Chintalwar GJ, Chattopadhyay S (2003) Radioprotective property of polysaccharide in Tinospora cordifolia. Indian J Biochem Biophys 40(1):22–26

    CAS  PubMed  Google Scholar 

  18. Lotan R (2002). In: M.R. Alison (Ed.), Differentiation Therapy, John Wiley & Sons Ltd.

  19. Xiong Y, Zhang H, Beach D (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Xiong Y, Beach D (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4:897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katayama M, Mizuta I, Sakoyama Y, Kohyama-Koganeya A, Akagawa K (1997) Differential expression of neuroD in primary cultures of cerebral cortical neurons. Exp Cell Res 236:412–417

    Article  CAS  PubMed  Google Scholar 

  22. Elder GA, Friedrich VL Jr, Kang C, Bosco P, Gourov A (1998) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sánchez C, Díaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61:133–168

    Article  PubMed  Google Scholar 

  24. Preusser M, Laggner U, Haberler C, Heinzl H, Budka H, Hainfellner JA (2006) Comparative analysis of NeuN immunoreactivity in primary brain tumours: conclusions for rational use in diagnostic histopathology. Histopathology 48(4):438–444

    Article  CAS  PubMed  Google Scholar 

  25. Cavallaro U, Niedermeyer J, Fuxa M, Christofori G (2001) N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3(7):650–657

    Article  CAS  PubMed  Google Scholar 

  26. Amoureux MC, Coulibaly B, Chinot O, Loundou A, Metellus P, Rougon G et al (2010) Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer 10:10–91

    Article  Google Scholar 

  27. Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI et al (2004) Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64:4394–4399

    Article  CAS  PubMed  Google Scholar 

  28. Deocaris CC, Widodo N, Shrestha BG, Kaur K, Ohtaka M et al (2007) Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Lett 252(2):259–269

    Article  CAS  PubMed  Google Scholar 

  29. Chiasserini D, Tozzi A, de Iure A, Tantucci M, Susta F et al (2011) Mortalin inhibition in experimental Parkinson’s disease. Mov Disord 26(9):1639–1647

    Article  PubMed  Google Scholar 

  30. Qu M, Zhou Z, Xu S, Chen C, Yu Z, Wang D (2011) Mortalin overexpression attenuates beta-amyloid-induced neurotoxicity in SH-SY5Y cells. Brain Res 1368:336–345

    Article  CAS  PubMed  Google Scholar 

  31. Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 13:759–772

    Article  CAS  PubMed  Google Scholar 

  32. Burstein E, Duckett CS (2003) Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 15:732–737

    Article  CAS  PubMed  Google Scholar 

  33. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  CAS  PubMed  Google Scholar 

  34. Teng CS (2000) Protooncogenes as mediators of apoptosis. Int Rev Cytol 197:137–202

    Article  CAS  PubMed  Google Scholar 

  35. Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, Annab L et al (1996) Induction of apoptosis by c-Fos protein. Mol Cell Biol 16:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abe K, Matsuki N (2000) Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 38:325–329

    Article  CAS  PubMed  Google Scholar 

  37. Strzalka W, Ziemienowicz A (2011) Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 107(7):1127–1140

    Article  CAS  PubMed  Google Scholar 

  38. Koundrioukoff S, Jonsson ZO, Hasan S, de Jong RN, Vander Vliet PC, Hottiger MO et al (2000) J Biol Chem 275:22882–22887

    Article  CAS  PubMed  Google Scholar 

  39. Bates S, Parry D, Bonetta L, Vousden K, Dickson C et al (1994) Absence of cyclin D/cdk complexes in cells lacking functional retinoblastoma protein. Oncogene 9(6):1633–1640

    CAS  PubMed  Google Scholar 

  40. Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79(4):573–582

    Article  CAS  PubMed  Google Scholar 

  41. Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73(3):400–409

    Article  CAS  PubMed  Google Scholar 

  42. Soltani MH, Pichardo R, Song Z, Sangha N, Camacho F, Satyamoorthy K et al (2005) Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Am J Pathol 166(6):1841–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284(45):31052–31061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang J, Oza J, Bridges K, Chen KY, Liu AY (2008) Neural differentiation and the attenuated heat shock response. Brain Res 1203:39–50

    Article  CAS  PubMed  Google Scholar 

  45. Wadhwa R, Kaul SC, Mitsui Y, Sugimoto Y (1993) Differential subcellular distribution of mortalin in mortal and immortal mouse and human fibroblasts. Exp Cell Res 207(2):442–448

    Article  CAS  PubMed  Google Scholar 

  46. Hsu WM, Lee H, Juan HF, Shih YY, Wang BJ et al (2008) Identification of GRP75 as an independent favorable prognostic marker of neuroblastoma by a proteomics analysis. Clin Cancer Res 14:6237–6245

    Article  CAS  PubMed  Google Scholar 

  47. Shih YY, Lee H, Nakagawara A, Juan HF, Jeng YM et al (2011) Nuclear GRP75 binds retinoic acid receptors to promote neuronal differentiation of neuroblastoma. PLoS ONE 6(10):e26236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  49. Evangelopoulos ME, Weis J, Kruttgen A (2005) Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene 24:3309–3318

    Article  CAS  PubMed  Google Scholar 

  50. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C (2006) Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25:6800–6816

    Article  CAS  PubMed  Google Scholar 

  51. Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP et al (2009) PUMA is directly activated by NF-kB and contributes to TNF-α-induced apoptosis. Cell Death Differ 16:1192–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ming L, Wang P, Bank A, Yu J, Zhang L (2006) PUMA dissociates Bax and BCL-XL to induce apoptosis in colon cancer cells. J Biol Chem 281:16034–16042

    Article  CAS  PubMed  Google Scholar 

  53. Hagenbuchner J, Ausserlechner MJ, Porto V, David R, Meister B, Bodner M et al (2010) The anti-apoptotic protein BCL2L1/Bcl-xl is neutralized by pro-apoptotic PMAIP1/Noxa in neuroblastoma, thereby determining bortezomib sensitivity independent of prosurvival MCL1 expression. J Biol Chem 285(10):6904–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goldsmith KC, Gross M, Peirce S, Luyindula D, Liu X, Vu A et al (2012) Mitochondrial Bcl-2 family dynamics define therapy response and resistance in neuroblastoma. Cancer Res 72(10):2565–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Appierto V, Villani MG, Cavadini E, Lotan R, Vinson C, Formelli F (2004) Involvement of c-fos in fenretinide induced apoptosis in human ovarian carcinoma cell. Cell Death Differ 11(3):270–279

    Article  CAS  PubMed  Google Scholar 

  56. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Shirasaki Y, Greenberg ME et al (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 217551–7560

  57. Seidenfaden R, Krauter A, Schertzinger F, Gerardy-Schahn R, Hildebrandt H (2003) Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol 23(16):5908–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amoureux MC, Coulibaly B, Chinot O, Loundou A, Metellus P et al (2010) Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer 10:91

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T et al (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci 22:9868–9876

    CAS  PubMed  Google Scholar 

  60. Chen WS, Chen PL, Lu D, Lind AC, Dehner LP (2014) Growth-associated protein 43 in differentiating peripheral nerve sheath tumors from other non-neural spindle cell neoplasms. Mod Pathol 27(2):184–193

    Article  CAS  PubMed  Google Scholar 

  61. Guarnieri S, Morabito C, Paolini C, Boncompagni S, Pilla R, Fanò-Illic G (2013) Growth associated protein 43 is expressed in skeletal muscle fibers and is localized in proximity of mitochondria and calcium release units. PLoS ONE 8(1):e53267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Noujaim D, van Golen CM, van Golen KL, Grauman A, Feldman EL (2002) NMyc and Bcl-2 coexpression induces MMP-2 secretion and activation in human neuroblastoma cells. Oncogene 21:4549–4557

    Article  CAS  PubMed  Google Scholar 

  63. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was partially supported by University Grant Commission—University with Potential for Excellence (UGC-UPE, India) and Centre with Potential for Excellence in Particular Area (CPEPA UGC, India) grants to the University. Ms Rachana Mishra is thankful to the DBT, GOI for the research fellowship grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest

The authors declare that no conflict of interests exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurcharan Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(a) Flourescent images of MAP-2 immunostaining of primary hippocampal neuronal cells treated with TCE. (b) MTT assay for IMR-32 neuroblastoma cells treated with hexane and chloroform fractions of TCE. (c) LDH assay for IMR-32 cells treated with different concentration of hexane and chloroform fraction of TCE. (GIF 175 kb)

High resolution image (TIFF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Kaur, G. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells. Mol Neurobiol 52, 719–733 (2015). https://doi.org/10.1007/s12035-014-8892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8892-5

Keywords

Navigation