Skip to main content
Log in

Mitochondrial KATP Channels Control Glioma Radioresistance by Regulating ROS-Induced ERK Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Malignant glioma is the most prevalent form of malignant brain tumor. Although radiotherapy is widely used in glioma treatment, the radioresistance of glioma cells limits the success of the glioma treatment. The lack of effective targets and signaling pathways to reverse glioma radioresistance is the critical obstacle in successful treatment. In this study, we demonstrate that mitochondrial ATP-sensitive potassium channels (mtKATP channels) are overexpressed in glioma cells and are closely related to the malignancy grade and the overall survival of the patients. Importantly, we showed that mtKATP channels could control glioma radioresistance by regulating reactive oxygen species (ROS)-induced ERK activation. The inhibition of mtKATP channels suppresses glioma radioresistance by inhibiting ERK activation both in vitro and in vivo. These findings reveal the important roles of the mitochondria and mtKATP channels as key regulators in the radioresistance of glioma cells, and suggest that mtKATP channel blockers and MAPK/ERK kinase (MEK) inhibitors are potential targets for drug development of glioma treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gladson CL, Prayson RA, Liu WM (2010) The pathobiology of glioma tumors. Annu Rev Pathol 5:33–50. doi:10.1146/annurev-pathol-121808-102109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330, doi:352/10/987 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126, doi:359/5/492 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Lukas RV, Boire A, Nicholas MK (2009) Targeted therapy in the treatment of malignant gliomas. Oncotarget 2:115–133

    CAS  Google Scholar 

  5. Henson JW (2006) Treatment of glioblastoma multiforme: a new standard. Arch Neurol 63(3):337–341. doi:10.1001/archneur.63.3.337, doi:63/3/337 [pii]

    Article  PubMed  Google Scholar 

  6. Prevarskaya N, Skryma R, Shuba Y (2010) Ion channels and the hallmarks of cancer. Trends Mol Med 16(3):107–121. doi:10.1016/j.molmed.2010.01.005, doi:S1471-4914(10)00011-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205(3):159–173. doi:10.1007/s00232-005-0781-4

    Article  CAS  PubMed  Google Scholar 

  8. O’Rourke B (2004) Evidence for mitochondrial K + channels and their role in cardioprotection. Circ Res 94(4):420–432. doi:10.1161/01.RES.0000117583.66950.4394/4/420 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  9. Terracciano CM, Yacoub MH (2010) Heart failure: a SHIFT from ion channels to clinical practice. Nat Rev Cardiol 7(12):669–670. doi:10.1038/nrcardio.2010.179, doi:nrcardio.2010.179 [pii]

    Article  PubMed  Google Scholar 

  10. Small DL (2001) Ion channels involved in stroke. Expert Opin Ther Targets 5(1):59–86. doi:10.1517/14728222.5.1.59

    CAS  PubMed  Google Scholar 

  11. Huang L, Li W, Li B, Zou F (2006) Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression. Neurosci Lett 398(1–2):34–38. doi:10.1016/j.neulet.2005.12.075, S0304-3940(05)01468-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Grotta JC, Pettigrew LC, Rosenbaum D, Reid C, Rhoades H, McCandless D (1988) Efficacy and mechanism of action of a calcium channel blocker after global cerebral ischemia in rats. Stroke 19(4):447–454

    Article  CAS  PubMed  Google Scholar 

  13. Molenaar RJ (2011) Ion channels in glioblastoma. ISRN Neurol 2011:590249. doi:10.5402/2011/590249

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weaver AK, Bomben VC, Sontheimer H (2006) Expression and function of calcium-activated potassium channels in human glioma cells. Glia 54(3):223–233. doi:10.1002/glia.20364

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102(14):1052–1068

    Article  CAS  PubMed  Google Scholar 

  16. Sontheimer H (2008) An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood) 233(7):779–791. doi:10.3181/0711-MR-308, doi:0711-MR-308 [pii]

    Article  CAS  Google Scholar 

  17. Huang L, Li B, Li W, Guo H, Zou F (2009) ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis 30(5):737–744

    Article  CAS  PubMed  Google Scholar 

  18. O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49. doi:10.1146/annurev.physiol.69.031905.163804

    Article  PubMed  PubMed Central  Google Scholar 

  19. Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606(1–3):1–21, doi:S0005272803001099[pii]

    Article  CAS  PubMed  Google Scholar 

  20. Teshima Y, Akao M, Li RA, Chong TH, Baumgartner WA, Johnston MV, Marban E (2003) Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke 34(7):1796–1802. doi:10.1161/01.STR.0000077017.60947, AE01.STR.0000077017.60947.AE[pii]

    Article  CAS  PubMed  Google Scholar 

  21. Yamauchi T, Kashii S, Yasuyoshi H, Zhang S, Honda Y, Akaike A (2003) Mitochondrial ATP-sensitive potassium channel: a novel site for neuroprotection. Invest Ophthalmol Vis Sci 44(6):2750–2756

    Article  PubMed  Google Scholar 

  22. Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD (2002) Mechanisms by which opening the mitochondrial ATP-sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283(1):H284–295. doi:10.1152/ajpheart.00034.2002

    Article  PubMed  Google Scholar 

  23. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoffman RM (1991) In vitro sensitivity assays in cancer: a review, analysis, and prognosis. J Clin Lab Anal 5(2):133–143

    Article  CAS  PubMed  Google Scholar 

  25. Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, von Guggenberg E, Neher A, Bonn GK, Huber LA, Lukas P (2008) Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8(21):4521–4533. doi:10.1002/pmic.200800113

    Article  CAS  PubMed  Google Scholar 

  26. Caron RW, Yacoub A, Mitchell C, Zhu X, Hong Y, Sasazuki T, Shirasawa S, Hagan MP, Grant S, Dent P (2005) Radiation-stimulated ERK1/2 and JNK1/2 signaling can promote cell cycle progression in human colon cancer cells. Cell Cycle 4(3):456–464, doi:1249 [pii]

    Article  CAS  PubMed  Google Scholar 

  27. Li HF, Kim JS, Waldman T (2009) Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol 4:43. doi:10.1186/1748-717X-4-43, doi:1748-717X-4-43 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2):320–344. doi:10.1128/MMBR.68.2.320-344.200468/2/320 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9(9):726–735

    CAS  PubMed  Google Scholar 

  30. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77(6):841–852, doi:0092-8674(94)90133-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta 1606(1–3):23–41, doi:S0005272803001087 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  33. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167. doi:10.1016/j.molcel.2012.09.025S1097-2765(12)00825-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K + channel in the mitochondrial inner membrane. Nature 352(6332):244–247. doi:10.1038/352244a0

    Article  CAS  PubMed  Google Scholar 

  35. O’Rourke B (2000) Myocardial K(ATP) channels in preconditioning. Circ Res 87(10):845–855

    Article  PubMed  Google Scholar 

  36. Seino S (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61:337–362. doi:10.1146/annurev.physiol.61.1.337

    Article  CAS  PubMed  Google Scholar 

  37. Gier B, Krippeit-Drews P, Sheiko T, Aguilar-Bryan L, Bryan J, Dufer M, Drews G (2009) Suppression of KATP channel activity protects murine pancreatic beta cells against oxidative stress. J Clin Invest 119(11):3246–3256. doi:10.1172/JCI3881738817 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Rourke B, Cortassa S, Akar F, Aon M (2007) Mitochondrial ion channels in cardiac function and dysfunction. Novartis Found Symp 287:140–151, discussion 152–146

    Article  PubMed  PubMed Central  Google Scholar 

  39. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. doi:10.1038/nrd2803, doi:nrd2803 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Landriscina M, Maddalena F, Laudiero G, Esposito F (2009) Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal 11(11):2701–2716. doi:10.1089/ars.2009.2692

    Article  CAS  PubMed  Google Scholar 

  41. Fremin C, Meloche S (2010) From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 3:8. doi:10.1186/1756-8722-3-8, doi:1756-8722-3-8 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (81001129 to L.H., 30900581 to B.L., 30971183 and 81041068 to H.G., 30971193 and 81272180 to F.Z.), National Basic Research Program of China, (2012CB518200 to F.Z.), Guangdong Natural Science Foundation (10451051501004726 to L.H.), Medical Scientific Research Foundation of Guangdong Province (B2010170 to L.H.), Guangdong Provincial Science and Technology Program (2009B03080123 to H.G.), Foundation for Distinguished Young Talents in Higher Education of Guangdong (LYM10049 to L.H.), and Foundation of President of School of Public Health and Tropical Medicine in Southern Medical University (GW200807 to L.H.).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zou.

Additional information

Lianyan Huang and Boxing Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Li, B., Tang, S. et al. Mitochondrial KATP Channels Control Glioma Radioresistance by Regulating ROS-Induced ERK Activation. Mol Neurobiol 52, 626–637 (2015). https://doi.org/10.1007/s12035-014-8888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8888-1

Keywords

Navigation