Skip to main content

Advertisement

Log in

Prioritizing Genes Related to Nicotine Addiction Via a Multi-source-Based Approach

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nicotine has a broad impact on both the central and peripheral nervous systems. Over the past decades, an increasing number of genes potentially involved in nicotine addiction have been identified by different technical approaches. However, the molecular mechanisms underlying nicotine addiction remain largely unknown. Under such situation, prioritizing the candidate genes for further investigation is becoming increasingly important. In this study, we presented a multi-source-based gene prioritization approach for nicotine addiction by utilizing the vast amounts of information generated from for nicotine addiction study during the past years. In this approach, we first collected and curated genes from studies in four categories, i.e., genetic association analysis, genetic linkage analysis, high-throughput gene/protein expression analysis, and literature search of single gene/protein-based studies. Based on these resources, the genes were scored and a weight value was determined for each category. Finally, the genes were ranked by their combined scores, and 220 genes were selected as the prioritized nicotine addiction-related genes. Evaluation suggested the prioritized genes were promising targets for further analysis and replication study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith SS, Fiore MC (1999) The epidemiology of tobacco use, dependence, and cessation in the United States. Prim Care 26(3):433–461

    Article  CAS  PubMed  Google Scholar 

  2. Murray S (2006) A smouldering epidemic. CMAJ 174(3):309–310

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jha P, Peto R (2014) Global effects of smoking, of quitting, and of taxing tobacco. N Engl J Med 370(1):60–68

    Article  CAS  PubMed  Google Scholar 

  4. Jha P (2009) Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer 9(9):655–664

    Article  CAS  PubMed  Google Scholar 

  5. CDC (2007) Cigarette smoking among adults—United States, 2006. Morb Mortal Wkly Rep [serial online] 56(44):1157–1161

    Google Scholar 

  6. CDC (2005b) Annual smoking-attributable mortality, years of potential life lost, and economic costs—United States, 1997--2001. Morb Mortal Wkly Rep [serial online] 54:625–628

    Google Scholar 

  7. Zhang J, Ou JX, Bai CX (2011) Tobacco smoking in China: prevalence, disease burden, challenges and future strategies. Respirology 16(8):1165–1172

    Article  PubMed  Google Scholar 

  8. Hughes JR, Stead LF, Lancaster T (2007) Antidepressants for smoking cessation. Cochrane Database Syst Rev 1:CD000031

    Google Scholar 

  9. Lerman CE, Schnoll RA, Munafo MR (2007) Genetics and smoking cessation improving outcomes in smokers at risk. Am J Prev Med 33(6 Suppl):S398–S405

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lerman C, Berrettini W (2003) Elucidating the role of genetic factors in smoking behavior and nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 118B(1):48–54

    Article  PubMed  Google Scholar 

  11. Goode EL et al (2003) Multiple genome-wide analyses of smoking behavior in the Framingham Heart Study. BMC Genet 4(Suppl 1):S102

    Article  PubMed  PubMed Central  Google Scholar 

  12. Osler M et al (2001) Influence of genes and family environment on adult smoking behavior assessed in an adoption study. Genet Epidemiol 21(3):193–200

    Article  CAS  PubMed  Google Scholar 

  13. Tammimaki A et al (2006) Effect of quinpirole on striatal dopamine release and locomotor activity in nicotine-treated mice. Eur J Pharmacol 531(1–3):118–125

    Article  PubMed  Google Scholar 

  14. Gaddnas H et al (2001) Enhanced motor activity and brain dopamine turnover in mice during long-term nicotine administration in the drinking water. Pharmacol Biochem Behav 70(4):497–503

    Article  CAS  PubMed  Google Scholar 

  15. Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105(4):849–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benwell ME, Balfour DJ (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325(1):13–20

    Article  CAS  PubMed  Google Scholar 

  17. Barik J, Wonnacott S (2006) Indirect modulation by alpha7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol 69(2):618–628

    Article  CAS  PubMed  Google Scholar 

  18. Barik J, Wonnacott S (2009) Molecular and cellular mechanisms of action of nicotine in the CNS. Handb Exp Pharmacol 192:173–207

    Article  CAS  Google Scholar 

  19. Kenny PJ, File SE, Rattray M (2001) Nicotine regulates 5-HT(1A) receptor gene expression in the cerebral cortex and dorsal hippocampus. Eur J Neurosci 13(6):1267–1271

    Article  CAS  PubMed  Google Scholar 

  20. Brunzell DH, Russell DS, Picciotto MR (2003) In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 84(6):1431–1441

    Article  CAS  PubMed  Google Scholar 

  21. Pagliusi SR et al (1996) The reinforcing properties of nicotine are associated with a specific patterning of c-fos expression in the rat brain. Eur J Neurosci 8(11):2247–2256

    Article  CAS  PubMed  Google Scholar 

  22. Nisell M et al (1997) Chronic nicotine enhances basal and nicotine-induced Fos immunoreactivity preferentially in the medial prefrontal cortex of the rat. Neuropsychopharmacology 17(3):151–161

    Article  CAS  PubMed  Google Scholar 

  23. Soderstrom K et al (2007) Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology (Berl) 191(4):891–897

    Article  CAS  Google Scholar 

  24. Tang K et al (1998) A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells. Mol Pharmacol 54(1):59–69

    CAS  PubMed  Google Scholar 

  25. Li MD et al (2004) Time-dependent changes in transcriptional profiles within five rat brain regions in response to nicotine treatment. Brain Res Mol Brain Res 132(2):168–180

    Article  CAS  PubMed  Google Scholar 

  26. Konu O et al (2001) Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res 909(1–2):194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dasgupta P, Chellappan SP (2006) Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle 5(20):2324–2328

    Article  CAS  PubMed  Google Scholar 

  28. Dasgupta P et al (2006) Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116(8):2208–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  CAS  PubMed  Google Scholar 

  30. Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25(6):317–324

    Article  CAS  PubMed  Google Scholar 

  31. Harkness PC, Millar NS (2002) Changes in conformation and subcellular distribution of alpha4beta2 nicotinic acetylcholine receptors revealed by chronic nicotine treatment and expression of subunit chimeras. J Neurosci 22(23):10172–10181

    CAS  PubMed  Google Scholar 

  32. Kane JK et al (2004) Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. Brain Res Mol Brain Res 132(2):181–191

    Article  CAS  PubMed  Google Scholar 

  33. Hwang YY, Li MD (2006) Proteins differentially expressed in response to nicotine in five rat brain regions: identification using a 2-DE/MS-based proteomics approach. Proteomics 6(10):3138–3153

    Article  CAS  PubMed  Google Scholar 

  34. Lessov CN et al (2004) Genetics and drug use as a complex phenotype. Subst Use Misuse 39(10–12):1515–1569

    Article  PubMed  Google Scholar 

  35. Tyndale RF (2003) Genetics of alcohol and tobacco use in humans. Ann Med 35(2):94–121

    Article  CAS  PubMed  Google Scholar 

  36. Hall W, Madden P, Lynskey M (2002) The genetics of tobacco use: methods, findings and policy implications. Tob Control 11(2):119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ho MK, Tyndale RF (2007) Overview of the pharmacogenomics of cigarette smoking. Pharmacogenomics J 7(2):81–98

    Article  CAS  PubMed  Google Scholar 

  38. Loukola A et al. (2013) Genome-wide association study on detailed profiles of smoking behavior and nicotine dependence in a twin sample. Mol Psychiatry

  39. Thorgeirsson TE et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42(5):448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uhl GR et al (2008) Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry 65(6):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J et al. (2007) Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment. Genes Brain Behav

  42. Wang J et al (2009) Significant modulation of mitochondrial electron transport system by nicotine in various rat brain regions. Mitochondrion 9(3):186–195

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44(3):269–286

    Article  CAS  PubMed  Google Scholar 

  44. Blalock EM et al (2005) Harnessing the power of gene microarrays for the study of brain aging and Alzheimer's disease: statistical reliability and functional correlation. Ageing Res Rev 4(4):481–512

    Article  CAS  PubMed  Google Scholar 

  45. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Li MD (2010) Common and unique biological pathways associated with smoking initiation/progression, nicotine dependence, and smoking cessation. Neuropsychopharmacology 35(3):702–719

    Article  CAS  PubMed  Google Scholar 

  47. Sullivan PF et al (2004) Candidate genes for nicotine dependence via linkage, epistasis, and bioinformatics. Am J Med Genet B Neuropsychiatr Genet 126B(1):23–36

    Article  PubMed  Google Scholar 

  48. Bierut LJ et al (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16(1):24–35

    Article  CAS  PubMed  Google Scholar 

  49. Saccone SF et al (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16(1):36–49

    Article  CAS  PubMed  Google Scholar 

  50. Uhl GR et al (2007) Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  51. Han S et al (2010) Meta-analysis of 15 genome-wide linkage scans of smoking behavior. Biol Psychiatry 67(1):12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roberts PM (2006) Mining literature for systems biology. Brief Bioinform 7(4):399–406

    Article  CAS  PubMed  Google Scholar 

  53. Li CY, Mao X, Wei L (2008) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4(1):e2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li MD, Burmeister M (2009) New insights into the genetics of addiction. Nat Rev Genet 10(4):225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dekkers A, Arats E (1991) Global optimization and simulated annealing. Mathmatical Programing 50(1-3):367–393

    Article  Google Scholar 

  56. Corana A et al (1987) Minimizing multimodal functions of continuous variables with the ‘simulated annealing’ algorithm. ACM Trans Math Softw 13(3):262–280

    Article  Google Scholar 

  57. Locatelli M (2000) Simulated annealing algorithms for continuous global optimization. J Optim Theory Appl 104(1):121–133

    Article  Google Scholar 

  58. Chen J et al (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  60. Sun J, Zhao Z (2010) Functional features, biological pathways, and protein interaction networks of addiction-related genes. Chem Biodivers 7(5):1153–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu J, Reith ME (2008) Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol Disord Drug Targets 7(5):393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69(4):628–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Konneker T et al (2008) A searchable database of genetic evidence for psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 147B(6):671–675

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sahoo SS et al (2008) An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence. J Biomed Inform 41(5):752–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saccone SF et al (2008) Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24(16):1805–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lewinger JP et al (2007) Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation. Genet Epidemiol 31(8):871–882

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Natural Science Foundation of China (Grant No. 31271411) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China. We are grateful to Prof. Ming D Li of University of Virginia for his help on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Wang.

Additional information

Xinhua Liu and Meng Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 63 kb)

ESM 2

(DOC 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, M., Li, X. et al. Prioritizing Genes Related to Nicotine Addiction Via a Multi-source-Based Approach. Mol Neurobiol 52, 442–455 (2015). https://doi.org/10.1007/s12035-014-8874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8874-7

Keywords

Navigation