Skip to main content

Advertisement

Log in

The Role of Secretory Phospholipase A2 in the Central Nervous System and Neurological Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Secretory phospholipase A2 (sPLA2s) are small secreted proteins (14–18 kDa) and require submillimolar levels of Ca2+ for liberating arachidonic acid from cell membrane lipids. In addition to the enzymatic function, sPLA2 can exert various biological responses by binding to specific receptors. Physiologically, sPLA2s play important roles on the neurotransmission in the central nervous system and the neuritogenesis in the peripheral nervous system. Pathologically, sPLA2s are involved in the neurodegenerative diseases (e.g., Alzheimer’s disease) and cerebrovascular diseases (e.g., stoke). The common pathology (e.g., neuronal apoptosis) of Alzheimer’s disease and stroke coexists in the mixed dementia, suggesting common pathogenic mechanisms of the two neurological diseases. Among mammalian sPLA2s, sPLA2-IB and sPLA2-IIA induce neuronal apoptosis in rat cortical neurons. The excess influx of calcium into neurons via l-type voltage-dependent Ca2+ channels mediates the two sPLA2-induced apoptosis. The elevated concentration of intracellular calcium activates PKC, MAPK and cytosolic PLA2. Moreover, it is linked with the production of reactive oxygen species and apoptosis through activation of the superoxide producing enzyme NADPH oxidase. NADPH oxidase is involved in the neurotoxicity of amyloid β peptide, which impairs synaptic plasticity long before its deposition in the form of amyloid plaques of Alzheimer’s disease. In turn, reactive oxygen species from NADPH oxidase can stimulate ERK1/2 phosphorylation and activation of cPLA2 and result in a release of arachidonic acid. sPLA2 is up-regulated in both Alzheimer’s disease and cerebrovascular disease, suggesting the involvement of sPLA2 in the common pathogenic mechanisms of the two diseases. Thus, our review presents evidences for pathophysiological roles of sPLA2 in the central nervous system and neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AD:

Alzheimer’s disease

AMPA:

Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APP:

Amyloid precursor protein

CaMK II:

Calcium/calmodulin-dependent protein kinase II

COX:

Cyclooxygenase

CVD:

Cerebrovascular disease

iPLA2 :

Ca2+-independent cytosolic phospholipase A2

ER:

Endoplasmic reticulum

FAβ:

Fibrillar Aβ

[Ca2+]i :

Intracellular Ca2+ concentration

IL-1β:

Interleukin-1β

LGCC:

Ligand-gated calcium channel

LTP:

Long-term potentiation

l-VDCC:

l-Type voltage-dependent Ca2+ channels

MAPK:

Mitogen-activated protein kinases

NMDA:

N-Methyl-d-aspartate

NFTs:

Neurofibrillary tangles

PAF:

Platelet activating factor

PLA2 :

Phospholipase A2

PG:

Prostaglandin

ROS:

Reactive oxygen species

sPLA2 :

Secreted phospholipase A2

sPLA2R:

Secretory phospholipase A2 receptor

References

  1. Goracci G, Ferrini M, Nardicchi V (2010) Low molecular weight phospholipases A2 in mammalian brain and neural cells: roles in functions and dysfunctions. Mol Neurobiol 41(2–3):274–289

    CAS  PubMed  Google Scholar 

  2. Farooqui AA, Ong WY, Horrocks LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58(3):591–620

    CAS  PubMed  Google Scholar 

  3. Laychock SG (1982) Phospholipase A2 activity in pancreatic islets is calcium-dependent and stimulated by glucose. Cell Calcium 3(1):43–54

    CAS  PubMed  Google Scholar 

  4. Clapham DE (1995) Calcium signaling. Cell 80(2):259–268

    CAS  PubMed  Google Scholar 

  5. Rosa AO, Rapoport SI (2009) Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta 1791(8):697–705

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Grataroli R, De Caro A, Guy O, Amic J, Figarella C (1981) Isolation and properties of prophospholipase A2 from human pancreatic juice. Biochimie 63(8–9):677–684

    CAS  PubMed  Google Scholar 

  7. Kolko M, Christoffersen NR, Varoqui H, Bazan NG (2005) Expression and induction of secretory phospholipase A2 group IB in brain. Cell Mol Neurobiol 25(7):1107–1122

    CAS  PubMed  Google Scholar 

  8. Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, Fujii N, Kawamoto K, Hanasaki K (2000) Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A(2)s. J Biol Chem 275(8):5785–5793

    CAS  PubMed  Google Scholar 

  9. Molloy GY, Rattray M, Williams RJ (1998) Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci Lett 258(3):139–142

    CAS  PubMed  Google Scholar 

  10. Valentin E, Koduri RS, Scimeca JC, Carle G, Gelb MH, Lazdunski M, Lambeau G (1999) Cloning and recombinant expression of a novel mouse-secreted phospholipase A2. J Biol Chem 274(27):19152–19160

    CAS  PubMed  Google Scholar 

  11. Kolko M, Christoffersen NR, Barreiro SG, Miller ML, Pizza AJ, Bazan NG (2006) Characterization and location of secretory phospholipase A2 groups IIE, V, and X in the rat brain. J Neurosci Res 83(5):874–882

    CAS  PubMed  Google Scholar 

  12. Valentin E, Singer AG, Ghomashchi F, Lazdunski M, Gelb MH, Lambeau G (2000) Cloning and recombinant expression of human group IIF-secreted phospholipase A(2). Biochem Biophys Res Commun 279(1):223–228

    CAS  PubMed  Google Scholar 

  13. Valentin E, Ghomashchi F, Gelb MH, Lazdunski M, Lambeau G (2000) Novel human secreted phospholipase A(2) with homology to the group III bee venom enzyme. J Biol Chem 275(11):7492–7496

    CAS  PubMed  Google Scholar 

  14. Masuda S, Yamamoto K, Hirabayashi T, Ishikawa Y, Ishii T, Kudo I, Murakami M (2008) Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival. Biochem J 409(2):429–438

    CAS  PubMed  Google Scholar 

  15. Chen J, Engle SJ, Seilhamer JJ, Tischfield JA (1994) Cloning and recombinant expression of a novel human low molecular weight Ca(2+)-dependent phospholipase A2. J Biol Chem 269(4):2365–2368

    CAS  PubMed  Google Scholar 

  16. Shirai Y, Ito M (2004) Specific differential expression of phospholipase A2 subtypes in rat cerebellum. J Neurocytol 33(3):297–307

    CAS  PubMed  Google Scholar 

  17. Nardicchi V, Macchioni L, Ferrini M, Goracci G (2007) The presence of a secretory phospholipase A2 in the nuclei of neuronal and glial cells of rat brain cortex. Biochim Biophys Acta 1771(11):1345–1352

    CAS  PubMed  Google Scholar 

  18. Cupillard L, Koumanov K, Mattei MG, Lazdunski M, Lambeau G (1997) Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2. J Biol Chem 272(25):15745–15752

    CAS  PubMed  Google Scholar 

  19. Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G (2000) Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J Biol Chem 275(51):39823–39826

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Negre-Aminou P, Nemenoff RA, Wood MR, de la Houssaye BA, Pfenninger KH (1996) Characterization of phospholipase A2 activity enriched in the nerve growth cone. J Neurochem 67(6):2599–2608

    CAS  PubMed  Google Scholar 

  21. Nakashima S, Kitamoto K, Arioka M (2004) The catalytic activity, but not receptor binding, of sPLA2s plays a critical role for neurite outgrowth induction in PC12 cells. Brain Res 1015(1–2):207–211

    CAS  PubMed  Google Scholar 

  22. Ikeno Y, Konno N, Cheon SH, Bolchi A, Ottonello S, Kitamoto K, Arioka M (2005) Secretory phospholipases A2 induce neurite outgrowth in PC12 cells through lysophosphatidylcholine generation and activation of G2A receptor. J Biol Chem 280(30):28044–28052

    CAS  PubMed  Google Scholar 

  23. Forlenza OV, Mendes CT, Marie SK, Gattaz WF (2007) Inhibition of phospholipase A2 reduces neurite outgrowth and neuronal viability. Prostaglandins Leukot Essent Fatty Acids 76(1):47–55

    CAS  PubMed  Google Scholar 

  24. DeCoster MA (2003) Group III secreted phospholipase A2 causes apoptosis in rat primary cortical neuronal cultures. Brain Res 988(1–2):20–28

    CAS  PubMed  Google Scholar 

  25. Makarova YV, Osipov AV, Tsetlin VI, Utkin YN (2006) Influence of phospholipases A2 from snake venoms on survival and neurite outgrowth in pheochromocytoma cell line PC12. Biochemistry (Mosc) 71(6):678–684

    CAS  Google Scholar 

  26. Yagami T, Yamamoto Y, Koma H, Nakamura T, Takasu N, Okamura N (2013) L-type voltage-dependent calcium channel is involved in the snake venom group IA secretory phospholipase A2-induced neuronal apoptosis. Neurotoxicology 35:146–153

    CAS  PubMed  Google Scholar 

  27. Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Kishino J, Sakaguchi G, Itoh N, Hori Y (2002) Group IB secretory phospholipase A(2)induces cell death in the cultured cortical neurons: a possible involvement of its binding sites. Brain Res 949(1–2):197–201

    CAS  PubMed  Google Scholar 

  28. Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, Gemba T, Hori Y (2002) Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol Pharmacol 61(1):114–126

    CAS  PubMed  Google Scholar 

  29. Matsuzawa A, Murakami M, Atsumi G, Imai K, Prados P, Inoue K, Kudo I (1996) Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem J 318(Pt 2):701–709

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang H, Siddiqi NJ, Alhomida AS, Ong WY (2013) Expression and localization of sPLA2-III in the rat CNS. Neurochem Res 38(4):753–760

    CAS  PubMed  Google Scholar 

  31. Kim DK, Rordorf G, Nemenoff RA, Koroshetz WJ, Bonventre JV (1995) Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem J 310(Pt 1):83–90

    CAS  PubMed Central  PubMed  Google Scholar 

  32. DeCoster MA, Lambeau G, Lazdunski M, Bazan NG (2002) Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J Neurosci Res 67(5):634–645

    CAS  PubMed  Google Scholar 

  33. Kolko M, DeCoster MA, de Turco EB, Bazan NG (1996) Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem 271(51):32722–32728

    CAS  PubMed  Google Scholar 

  34. Rodriguez De Turco EB, Jackson FR, DeCoster MA, Kolko M, Bazan NG (2002) Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes. J Neurosci Res 68(5):558–567

    CAS  PubMed  Google Scholar 

  35. Wolf MJ, Izumi Y, Zorumski CF, Gross RW (1995) Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 377(3):358–362

    CAS  PubMed  Google Scholar 

  36. Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245(4920):862–866

    CAS  PubMed  Google Scholar 

  37. English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31):19103–19106

    CAS  PubMed  Google Scholar 

  38. Massicotte G, Baudry M (1990) Modulation of dl-alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/quisqualate receptors by phospholipase A2 treatment. Neurosci Lett 118(2):245–248

    CAS  PubMed  Google Scholar 

  39. Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336(6194):68–70

    CAS  PubMed  Google Scholar 

  40. Okada D, Yamagishi S, Sugiyama H (1989) Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fiber synapses and Schaffer/commissural synapses. Neurosci Lett 100(1–3):141–146

    CAS  PubMed  Google Scholar 

  41. Drapeau C, Pellerin L, Wolfe LS, Avoli M (1990) Long-term changes of synaptic transmission induced by arachidonic acid in the CA1 subfield of the rat hippocampus. Neurosci Lett 115(2–3):286–292

    CAS  PubMed  Google Scholar 

  42. Arai A, Lynch G (1992) Antagonists of the platelet-activating factor receptor block long-term potentiation in hippocampal slices. Eur J Neurosci 4(5):411–419

    PubMed  Google Scholar 

  43. Wieraszko A, Li G, Kornecki E, Hogan MV, Ehrlich YH (1993) Long-term potentiation in the hippocampus induced by platelet-activating factor. Neuron 10(3):553–557

    CAS  PubMed  Google Scholar 

  44. Williams JH, Errington ML, Lynch MA, Bliss TV (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341(6244):739–742

    CAS  PubMed  Google Scholar 

  45. O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A 88(24):11285–11289

    PubMed Central  PubMed  Google Scholar 

  46. Miller B, Sarantis M, Traynelis SF, Attwell D (1992) Potentiation of NMDA receptor currents by arachidonic acid. Nature 355(6362):722–725

    CAS  PubMed  Google Scholar 

  47. Fujita S, Ikegaya Y, Nishikawa M, Nishiyama N, Matsuki N (2001) Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A(2) inhibitor in rat hippocampal slices. Br J Pharmacol 132(7):1417–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Hadjiagapiou C, Spector AA (1987) Docosahexaenoic acid metabolism and effect on prostacyclin production in endothelial cells. Arch Biochem Biophys 253(1):1–12

    CAS  PubMed  Google Scholar 

  49. Praznikar ZJ, Kovacic L, Rowan EG, Romih R, Rusmini P, Poletti A, Krizaj I, Pungercar J (2008) A presynaptically toxic secreted phospholipase A2 is internalized into motoneuron-like cells where it is rapidly translocated into the cytosol. Biochim Biophys Acta 1783(6):1129–1139

    CAS  PubMed  Google Scholar 

  50. Wisniewski T, Frangione B (1996) Molecular biology of brain aging and neurodegenerative disorders. Acta Neurobiol Exp (Wars) 56(1):267–279

    CAS  Google Scholar 

  51. Yagami T (2006) Cerebral arachidonate cascade in dementia: Alzheimer’s disease and vascular dementia. Curr Neuropharmacol 4(1):87–100

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Lin TN, Wang Q, Simonyi A, Chen JJ, Cheung WM, He YY, Xu J, Sun AY, Hsu CY, Sun GY (2004) Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J Neurochem 90(3):637–645

    CAS  PubMed  Google Scholar 

  53. Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3:28

    PubMed Central  PubMed  Google Scholar 

  54. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K (1997) Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J Neurochem 68(1):265–271

    CAS  PubMed  Google Scholar 

  56. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389

    CAS  PubMed  Google Scholar 

  57. Ueda K, Fukui Y, Kageyama H (1994) Amyloid beta protein-induced neuronal cell death: neurotoxic properties of aggregated amyloid beta protein. Brain Res 639(2):240–244

    CAS  PubMed  Google Scholar 

  58. Yagami T, Ueda K, Asakura K, Nakazato H, Hata S, Kuroda T, Sakaeda T, Sakaguchi G, Itoh N, Hashimoto Y, Hori Y (2003) Human group IIA secretory phospholipase A2 potentiates Ca2+ influx through l-type voltage-sensitive Ca2+ channels in cultured rat cortical neurons. J Neurochem 85(3):749–758

    CAS  PubMed  Google Scholar 

  59. Viola HM, Arthur PG, Hool LC (2007) Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in l-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 100(7):1036–1044

    CAS  PubMed  Google Scholar 

  60. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–767

    CAS  PubMed  Google Scholar 

  61. Paola D, Domenicotti C, Nitti M, Vitali A, Borghi R, Cottalasso D, Zaccheo D, Odetti P, Strocchi P, Marinari UM, Tabaton M, Pronzato MA (2000) Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun 268(2):642–646

    CAS  PubMed  Google Scholar 

  62. Harada J, Sugimoto M (1999) Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res 842(2):311–323

    CAS  PubMed  Google Scholar 

  63. Lee C, Park DW, Lee J, Lee TI, Kim YJ, Lee YS, Baek SH (2006) Secretory phospholipase A2 induces apoptosis through TNF-alpha and cytochrome c-mediated caspase cascade in murine macrophage RAW 264.7 cells. Eur J Pharmacol 536(1–2):47–53

    CAS  PubMed  Google Scholar 

  64. Black SE (2005) Vascular dementia. Stroke risk and sequelae define therapeutic approaches. Postgrad Med 117(1):15–16, 19–25

    PubMed  Google Scholar 

  65. in’t Veld BA, Ruitenberg A, Hofman A, Stricker BH, Breteler MM (2001) Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging 22(3):407–412

    PubMed  Google Scholar 

  66. Schehr RS (1996) New treatments for acute stroke. Nat Biotechnol 14(11):1549–1554

    CAS  PubMed  Google Scholar 

  67. Umemura K, Kawai H, Ishihara H, Nakashima M (1995) Inhibitory effect of clopidogrel, vapiprost and argatroban on the middle cerebral artery thrombosis in the rat. Jpn J Pharmacol 67(3):253–258

    CAS  PubMed  Google Scholar 

  68. Hallenbeck JM (1994) Blood-damaged tissue interaction in experimental brain ischemia. Acta Neurochir Suppl (Wien) 60:233–237

    CAS  Google Scholar 

  69. Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M (1995) Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 146(5):1045–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Yagami T, Ueda K, Asakura K, Hayasaki-Kajiwara Y, Nakazato H, Sakaeda T, Hata S, Kuroda T, Takasu N, Hori Y (2002) Group IB secretory phospholipase A2 induces neuronal cell death via apoptosis. J Neurochem 81(3):449–461

    CAS  PubMed  Google Scholar 

  71. Yagami T, Ueda K, Asakura K, Sakaeda T, Hata S, Kuroda T, Sakaguchi G, Itoh N, Hashimoto Y, Hori Y (2003) Porcine pancreatic group IB secretory phospholipase A2 potentiates Ca2+ influx through l-type voltage-sensitive Ca2+ channels. Brain Res 960(1–2):71–80

    CAS  PubMed  Google Scholar 

  72. Prat A, Antel J (2005) Pathogenesis of multiple sclerosis. Curr Opin Neurol 18(3):225–230

    CAS  PubMed  Google Scholar 

  73. Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S (2003) Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation. Glia 44(3):275–282

    PubMed  Google Scholar 

  74. Cunningham TJ, Yao L, Oetinger M, Cort L, Blankenhorn EP, Greenstein JI (2006) Secreted phospholipase A2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroinflammation 3:26

    PubMed Central  PubMed  Google Scholar 

  75. Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15(3):415–436

    PubMed  Google Scholar 

  76. Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM (2009) Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 57(14):1521–1537

    PubMed  Google Scholar 

  77. Yegin A, Akbas SH, Ozben T, Korgun DK (2002) Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol Scand 106(5):258–262

    CAS  PubMed  Google Scholar 

  78. Visioli F, Rodriguez de Turco EB, Kreisman NR, Bazan NG (1994) Membrane lipid degradation is related to interictal cortical activity in a series of seizures. Metab Brain Dis 9(2):161–170

    CAS  PubMed  Google Scholar 

  79. Lambeau G, Ancian P, Barhanin J, Lazdunski M (1994) Cloning and expression of a membrane receptor for secretory phospholipases A2. J Biol Chem 269(3):1575–1578

    CAS  PubMed  Google Scholar 

  80. Lambeau G, Barhanin J, Schweitz H, Qar J, Lazdunski M (1989) Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the Taipan venom. J Biol Chem 264(19):11503–11510

    CAS  PubMed  Google Scholar 

  81. Copic A, Vucemilo N, Gubensek F, Krizaj I (1999) Identification and purification of a novel receptor for secretory phospholipase A(2) in porcine cerebral cortex. J Biol Chem 274(37):26315–26320

    CAS  PubMed  Google Scholar 

  82. Dev KK, Foged C, Andersen H, Honore T, Henley JM (1997) High-affinity binding sites for 125I-labelled pancreatic secretory phospholipase A2 in rat brain. Brain Res Mol Brain Res 49(1–2):120–126

    CAS  PubMed  Google Scholar 

  83. Higashino K, Ishizaki J, Kishino J, Ohara O, Arita H (1994) Structural comparison of phospholipase-A2-binding regions in phospholipase-A2 receptors from various mammals. Eur J Biochem 225(1):375–382

    CAS  PubMed  Google Scholar 

  84. Nakajima M, Hanasaki K, Ueda M, Arita H (1992) Effect of pancreatic type phospholipase A2 on isolated porcine cerebral arteries via its specific binding sites. FEBS Lett 309(3):261–264

    CAS  PubMed  Google Scholar 

  85. Kishino J, Ohara O, Nomura K, Kramer RM, Arita H (1994) Pancreatic-type phospholipase A2 induces group II phospholipase A2 expression and prostaglandin biosynthesis in rat mesangial cells. J Biol Chem 269(7):5092–5098

    CAS  PubMed  Google Scholar 

  86. Arita H, Hanasaki K, Nakano T, Oka S, Teraoka H, Matsumoto K (1991) Novel proliferative effect of phospholipase A2 in Swiss 3T3 cells via specific binding site. J Biol Chem 266(29):19139–19141

    CAS  PubMed  Google Scholar 

  87. Hanasaki K, Arita H (1992) Characterization of a high affinity binding site for pancreatic-type phospholipase A2 in the rat. Its cellular and tissue distribution. J Biol Chem 267(9):6414–6420

    CAS  PubMed  Google Scholar 

  88. Ishizaki J, Hanasaki K, Higashino K, Kishino J, Kikuchi N, Ohara O, Arita H (1994) Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem 269(8):5897–5904

    CAS  PubMed  Google Scholar 

  89. Yokota Y, Hanasaki K, Ono T, Nakazato H, Kobayashi T, Arita H (1999) Suppression of murine endotoxic shock by sPLA2 inhibitor, indoxam, through group IIA sPLA2-independent mechanisms. Biochim Biophys Acta 1438(2):213–222

    CAS  PubMed  Google Scholar 

  90. Kolko M, de Turco EB, Diemer NH, Bazan NG (2002) Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors. Neuroreport 13(15):1963–1966

    CAS  PubMed  Google Scholar 

  91. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2(3):173–189

    CAS  PubMed  Google Scholar 

  92. Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2481–2504

    CAS  PubMed  Google Scholar 

  93. Bey EA, Xu B, Bhattacharjee A, Oldfield CM, Zhao X, Li Q, Subbulakshmi V, Feldman GM, Wientjes FB, Cathcart MK (2004) Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. J Immunol 173(9):5730–5738

    CAS  PubMed  Google Scholar 

  94. Simonyi A, He Y, Sheng W, Sun AY, Wood WG, Weisman GA, Sun GY (2010) Targeting NADPH oxidase and phospholipases A2 in Alzheimer’s disease. Mol Neurobiol 41(2–3):73–86

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12(7):857–863

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106(1):45–55

    CAS  PubMed  Google Scholar 

  97. Sherry ST, Ward M, Sirotkin K (1999) dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 9(8):677–679

    CAS  PubMed  Google Scholar 

  98. Eckert GP, Schaeffer EL, Schmitt A, Maras A, Gattaz WF (2011) Increased brain membrane fluidity in schizophrenia. Pharmacopsychiatry 44(4):161–162

    CAS  PubMed  Google Scholar 

  99. Schaeffer EL, Gattaz WF, Eckert GP (2012) Alterations of brain membranes in Sshizophrenia: impact of phospholipase A2. Curr Top Med Chem

  100. Barbosa NR, Junqueira RM, Vallada HP, Gattaz WF (2007) Association between BanI genotype and increased phospholipase A2 activity in schizophrenia. Eur Arch Psychiatry Clin Neurosci 257(6):340–343

    PubMed  Google Scholar 

  101. Bate C, Reid S, Williams A (2004) Phospholipase A2 inhibitors or platelet-activating factor antagonists prevent prion replication. J Biol Chem 279(35):36405–36411

    CAS  PubMed  Google Scholar 

  102. Bate C, Tayebi M, Williams A (2008) Sequestration of free cholesterol in cell membranes by prions correlates with cytoplasmic phospholipase A2 activation. BMC Biol 6:8

    PubMed Central  PubMed  Google Scholar 

  103. Yoshino H, Tomiyama H, Tachibana N, Ogaki K, Li Y, Funayama M, Hashimoto T, Takashima S, Hattori N (2010) Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 75(15):1356–1361

    CAS  PubMed  Google Scholar 

  104. Klivenyi P, Beal MF, Ferrante RJ, Andreassen OA, Wermer M, Chin MR, Bonventre JV (1998) Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J Neurochem 71(6):2634–2637

    CAS  PubMed  Google Scholar 

  105. Tariq M, Khan HA, Al Moutaery K, Al Deeb S (2001) Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res Bull 54(1):77–82

    CAS  PubMed  Google Scholar 

  106. Pereira MP, Hurtado O, Cardenas A, Bosca L, Castillo J, Davalos A, Vivancos J, Serena J, Lorenzo P, Lizasoain I, Moro MA (2006) Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab 26(2):218–229

    CAS  PubMed  Google Scholar 

  107. Yagami T, Ueda K, Asakura K, Takasu N, Sakaeda T, Itoh N, Sakaguchi G, Kishino J, Nakazato H, Katsuyama Y, Nagasaki T, Okamura N, Hori Y, Hanasaki K, Arimura A, Fujimoto M (2003) Novel binding sites of 15-deoxy-Delta12,14-prostaglandin J2 in plasma membranes from primary rat cortical neurons. Exp Cell Res 291(1):212–227

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsurou Yagami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagami, T., Yamamoto, Y. & Koma, H. The Role of Secretory Phospholipase A2 in the Central Nervous System and Neurological Diseases. Mol Neurobiol 49, 863–876 (2014). https://doi.org/10.1007/s12035-013-8565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8565-9

Keywords

Navigation