Skip to main content

Mammalian Phospholipase D: Structure, Regulation, and Physiological Function of Phospholipase D and its Link to Pathology

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6372 Accesses

Abstract

During the past two decades, structure and functions of mammalian phospholipase D (PLD), which hydrolyzes phosphatidylcholine to produce the signaling lipid phosphatidic acid, has been extensively investigated. Now, it is generally accepted that conventional two PLD isozymes, PLD1 and PLD2, play important roles in diverse cellular functions, such as endocytosis, exocytosis, membrane trafficking, cell growth, differentiation, and actin cytoskeleton reorganization. In addition, phenotypic analyses of mice lacking the PLD genes revealed that the disturbance of the PLD-mediated cellular signaling is closely related to several diseases. In this review, we summarize an overview of structures, regulatory mechanisms, and physiological functions of PLD isoforms, and discuss the emerging importance of this protein family in a wide variety of diseases, including tumor growth and metastasis, cardiovascular and cerebrovascular diseases, Alzheimer’s disease, and immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDermott M, Wakelam MJ, Morris AJ (2004) Phospholipase D. Biochem Cell Biol 82:225–253

    Article  CAS  PubMed  Google Scholar 

  2. Saito M, Kanfer J (1975) Phosphatidohydrolase activity in a solubilized preparation from rat brain particulate fraction. Arch Biochem Biophys 169:318–323

    Article  CAS  PubMed  Google Scholar 

  3. Hammond SM, Altshuller YM, Sung TC et al (1995) Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 270:29640–29643

    Article  CAS  PubMed  Google Scholar 

  4. Colley WC, Sung TC, Roll R et al (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201

    Article  CAS  PubMed  Google Scholar 

  5. Liscovitch M, Czarny M, Fiucci G, Tang X (2000) Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 345:401–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    Article  CAS  PubMed  Google Scholar 

  7. Donaldson JG (2009) Phospholipase D in endocytosis and endosomal recycling pathways. Biochim Biophys Acta 1791:845–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bader MF, Vitale N (2009) Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta 1791:936–941

    Article  CAS  PubMed  Google Scholar 

  9. Foster DA, Xu L (2003) Phospholipase D in cell proliferation and cancer. Mol Cancer Res 1:789–800

    CAS  PubMed  Google Scholar 

  10. Rudge SA, Wakelam MJ (2009) Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton. Biochim Biophys Acta 1791:856–861

    Article  CAS  PubMed  Google Scholar 

  11. Gomez-Cambronero J, Keire P (1998) Phospholipase D: a novel major player in signal transduction. Cell Signal 10:387–397

    Article  CAS  PubMed  Google Scholar 

  12. Sato T, Hongu T, Sakamoto M et al (2012) Molecular mechanisms of N-formyl-methionyl-leucyl-phenylalanine-induced superoxide generation and degranulation in mouse neutrophils: phospholipase D is dispensable. Mol Cell Biol 33:136–145

    Article  PubMed  Google Scholar 

  13. Frohman MA, Sung TC, Morris AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta 1439:175–186

    Article  CAS  PubMed  Google Scholar 

  14. Sung TC, Roper RL, Zhang Y et al (1997) Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J 16:4519–4530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sciorra VA, Rudge SA, Wang J et al (2002) Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. J Cell Biol 159:1039–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sugars JM, Cellek S, Manifava M et al (2002) Hierarchy of membrane-targeting signals of phospholipase D1 involving lipid modification of a pleckstrin homology domain. J Biol Chem 277:29152–29161

    Article  CAS  PubMed  Google Scholar 

  17. Du G, Altshuller YM, Vitale N et al (2003) Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol 162:305–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Stahelin RV, Ananthanarayanan B, Blatner NR et al (2004) Mechanism of membrane binding of the phospholipase D1 PX domain. J Biol Chem 279:54918–54926

    Article  CAS  PubMed  Google Scholar 

  19. Sciorra VA, Rudge SA, Prestwich GD et al (1999) Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J 18:5911–5921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sung TC, Zhang Y, Morris AJ, Frohman MA (1999) Structural analysis of human phospholipase D1. J Biol Chem 274:3659–3666

    Article  CAS  PubMed  Google Scholar 

  21. Sung TC, Altshuller YM, Morris AJ, Frohman MA (1999) Molecular analysis of mammalian phospholipase D2. J Biol Chem 274:494–502

    Article  CAS  PubMed  Google Scholar 

  22. Exton JH (1999) Regulation of phospholipase D. Biochim Biophys Acta 1439:121–133

    Article  CAS  PubMed  Google Scholar 

  23. Brown HA, Gutowski S, Moomaw CR et al (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75:1137–1144

    Article  CAS  PubMed  Google Scholar 

  24. Bowman EP, Uhlinger DJ, Lambeth JD (1993) Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTP-binding protein. J Biol Chem 268:21509–21512

    CAS  PubMed  Google Scholar 

  25. Malcolm KC, Ross AH, Qiu RG et al (1994) Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. J Biol Chem 269:25951–25954

    CAS  PubMed  Google Scholar 

  26. Hammond SM, Jenco JM, Nakashima S et al (1997) Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. J Biol Chem 272:3860–3868

    Article  CAS  PubMed  Google Scholar 

  27. Yamazaki M, Zhang Y, Watanabe H et al (1999) Interaction of the small G protein RhoA with the C terminus of human phospholipase D1. J Biol Chem 274:6035–6038

    Article  CAS  PubMed  Google Scholar 

  28. Bae CD, Min DS, Fleming IN, Exton JH (1998) Determination of interaction sites on the small G protein RhoA for phospholipase D. J Biol Chem 273:11596–11604

    Article  CAS  PubMed  Google Scholar 

  29. Powner DJ, Hodgkin MN, Wakelam MJ (2002) Antigen-stimulated activation of phospholipase D1b by Rac1, ARF6, and PKC α in RBL-2H3 cells. Mol Biol Cell 13:1252–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chen JS, Exton JH (2004) Regulation of phospholipase D2 activity by protein kinase C α. J Biol Chem 279:22076–22083

    Article  CAS  PubMed  Google Scholar 

  31. Singer WD, Brown HA, Jiang X, Sternweis PC (1996) Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J Biol Chem 271:4504–4510

    Article  CAS  PubMed  Google Scholar 

  32. Hu T, Exton JH (2003) Mechanisms of regulation of phospholipase D1 by protein kinase Calpha. J Biol Chem 278:2348–2355

    Article  CAS  PubMed  Google Scholar 

  33. Lee TG, Park JB, Lee SD et al (1997) Phorbolmyristate acetate-dependent association of protein kinase C α with phospholipase D1 in intact cells. Biochim Biophys Acta 1347:199–204

    Article  CAS  PubMed  Google Scholar 

  34. Kim JH, Lee SD, Han JM et al (1998) Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. FEBS Lett 430:231–235

    Article  CAS  PubMed  Google Scholar 

  35. Sun Y, Fang Y, Yoon MS et al (2008) Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci U S A 105:8286–8291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Han L, Stope MB, de Jesus ML et al (2007) Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J 26:4189–4202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kodaki T, Yamashita S (1997) Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J Biol Chem 272:11408–11413

    Article  CAS  PubMed  Google Scholar 

  38. Kim JH, Lee S, Lee TG et al (2002) Phospholipase D2 directly interacts with aldolase via its PH domain. Biochemistry 41:3414–3421

    Article  CAS  PubMed  Google Scholar 

  39. Park JB, Kim JH, Kim Y et al (2000) Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner. J Biol Chem 275:21295–21301

    Article  CAS  PubMed  Google Scholar 

  40. Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by α- and β-synucleins. Biochemistry 37:4901–4909

    Article  CAS  PubMed  Google Scholar 

  41. Jang JH, Lee CS, Hwang D, Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51:71–81

    Article  CAS  PubMed  Google Scholar 

  42. Roth MG (2008) Molecular mechanisms of PLD function in membrane traffic. Traffic 9:1233–1239

    Article  CAS  PubMed  Google Scholar 

  43. Shen Y, Xu L, Foster DA (2001) Role for phospholipase D in receptor-mediated endocytosis. Mol Cell Biol 21:595–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Koch T, Brandenburg LO, Liang Y et al (2004) Phospholipase D2 modulates agonist-induced mu-opioid receptor desensitization and resensitization. J Neurochem 88:680–688

    Article  CAS  PubMed  Google Scholar 

  45. Du G, Huang P, Liang BT, Frohman MA (2004) Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 15:1024–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bhattacharya M, Babwah AV, Godin C et al (2004) Ral and phospholipase D2-dependent pathway for constitutive metabotropic glutamate receptor endocytosis. J Neurosci 24:8752–8761

    Article  CAS  PubMed  Google Scholar 

  47. Norambuena A, Metz C, Jung JE et al (2010) Phosphatidic acid induces ligand-independent epidermal growth factor receptor endocytic traffic through PDE4 activation. Mol Biol Cell 21:2916–2929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lee CS, Kim IS, Park JB et al (2006) The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis. Nat Cell Biol 8:477–484

    Article  CAS  PubMed  Google Scholar 

  49. Lee CS, Kim KL, Jang JH et al (2009) The roles of phospholipase D in EGFR signaling. Biochim Biophys Acta 1791:862–868

    Article  CAS  PubMed  Google Scholar 

  50. Hughes WE, Elgundi Z, Huang P, Frohman MA et al (2004) Phospholipase D1 regulates secretagogue-stimulated insulin release in pancreatic β-cells. J Biol Chem 279:27534–27541

    Article  CAS  PubMed  Google Scholar 

  51. Vitale N, Caumont AS, Chasserot-Golaz S et al (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Humeau Y, Vitale N, Chasserot-Golaz S et al (2001) A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci U S A 98:15300–15305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Choi WS, Kim YM, Combs C, Frohman MA et al (2002) Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J Immunol 168:5682–5689

    CAS  PubMed  Google Scholar 

  54. Wang L, Cummings R, Usatyuk P et al (2002) Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 367:751–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Vitale N, Chasserot-Golaz S, Bailly Y et al (2002) Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF) 6 by ARF nucleotide binding site opener at the plasma membrane. J Cell Biol 159:79–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Jovanovic OA, Brow FD, Donaldson JG (2006) An effector domain mutant of Arf6 implicates phospholipase D in endosomal membrane recycling. Mol Biol Cell 17:327–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yang JS, Valente C, Polishchuk RS et al (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13:996–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Perez-Mansilla B, Ha VL, Justin N et al (2006) The differential regulation of phosphatidylinositol 4-phosphate 5-kinases and phospholipase D1 by ADP-ribosylation factors 1 and 6. Biochim Biophys Acta 1761:1429–1442

    Article  CAS  PubMed  Google Scholar 

  59. Honda A, Nogami M, Yokozeki T et al (1999) Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532

    Article  CAS  PubMed  Google Scholar 

  60. Sanematsu F, Nishikimi A, Watanabe M et al (2013) Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. J Biol Chem 288:8092–8100

    Article  CAS  PubMed  Google Scholar 

  61. Ali WH, Chen Q, Delgiorno KE et al (2013) Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment. PLoS One 8:e55325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kanaho Y, Funakoshi Y, Hasegawa H (2009) Phospholipase D signalling and its involvement in neurite outgrowth. Biochim Biophys Acta 1791:898–904

    Article  CAS  PubMed  Google Scholar 

  63. Peng X, Frohman MA (2012) Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 204:219–226

    Article  CAS  Google Scholar 

  64. Su W, Chen Q, Frohman MA (2009) Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 5:1477–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Saito M, Iwadate M, Higashimoto M et al (2007) Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep 18:1329–1334

    CAS  PubMed  Google Scholar 

  66. Foster DA (2009) Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta 1791:949–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Min DS, Kwon TK, Park WS et al (2001) Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis 22:1641–1647

    Article  CAS  PubMed  Google Scholar 

  68. Zhao C, Du G, Skowronek K et al (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9:706–712

    CAS  PubMed  Google Scholar 

  69. Rizzo MA, Shome K, Watkins SC, Romero G (2000) The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 275:23911–23918

    Article  CAS  PubMed  Google Scholar 

  70. Fang Y, Vilella-Bach M, Bachmann R et al (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    Article  CAS  PubMed  Google Scholar 

  71. Chen Y, Rodrik V, Foster DA (2005) Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene 24:672–679

    Article  CAS  PubMed  Google Scholar 

  72. Hui L, Abbas T, Pielak RM et al (2004) Phospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53. Mol Cell Biol 24:5677–5686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Rodrik V, Zheng Y, Harrow F et al (2005) Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc. Mol Cell Biol 25:7917–7925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Zheng Y, Rodrik V, Toschi A et al (2006) Phospholipase D couples survival and migration signals in stress response of human cancer cells. J Biol Chem 281:15862–15868

    Article  CAS  PubMed  Google Scholar 

  75. Park MH, Ahn BH, Hong YK, Min do S (2009) Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappa B/Sp1-mediated signaling pathways. Carcinogenesis 30:356–365

    Article  CAS  PubMed  Google Scholar 

  76. Kang DW, Park MH, Lee YJ et al (2008) Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFĸB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem 283:4094–4104

    Article  CAS  PubMed  Google Scholar 

  77. Muralidharan-Chari V, Clancy J, Plou C et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chen Q, Hongu T, Sato T et al (2012) Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci Signal 5:ra79

    PubMed Central  PubMed  Google Scholar 

  79. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhang Q, Wang D, Kundumani-Sridharan V et al (2010) PLD1-dependent PKCγ activation downstream to Src is essential for the development of pathologic retinal neovascularization. Blood 116:1377–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Im JH, Fu W, Wang H et al (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619

    Article  CAS  PubMed  Google Scholar 

  82. Elvers M, Stegner D, Hagedorm I et al (2010) Impaired αIIbβ3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal 3:ra1

    Article  PubMed Central  PubMed  Google Scholar 

  83. Ozaki Y, Asazuma N, Suzuki-Inoue K, Berndt MC (2005) Platelet GPIb-IX-V-dependent signaling. J Thromb Haemost 3:1745–1751

    Article  CAS  PubMed  Google Scholar 

  84. Hong KW, Jin HS, Lim JE et al (2010) Non-synonymous single-nucleotide polymorphisms associated with blood pressure and hypertension. J Hum Hypertens 24:763–774

    Article  CAS  PubMed  Google Scholar 

  85. Tsukahara T, Tsukahara R, Fujiwara Y et al (2010) Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidic acid. Mol Cell 39:421–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Oliveira TG, Chen RB, Tian H et al (2010) Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 30:16419–16428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Kanaho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hongu, T., Kanaho, Y. (2014). Mammalian Phospholipase D: Structure, Regulation, and Physiological Function of Phospholipase D and its Link to Pathology. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_21

Download citation

Publish with us

Policies and ethics