Skip to main content

Advertisement

Log in

Roles for NF-κB and Gene Targets of NF-κB in Synaptic Plasticity, Memory, and Navigation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although traditionally associated with immune function, the transcription factor nuclear factor kappa B (NF-κB) has garnered much attention in recent years as an important regulator of memory. Specifically, research has found that NF-κB, localized in both neurons and glia, is activated during the induction of long-term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory. Further, experimental manipulation of NF-κB activation or its blockade results in altered memory and spatial navigation abilities. Genetic knockout of specific NF-κB subunits in mice results in memory alterations. Collectively, such data suggest that NF-κB may be a requirement for memory, although the direction of the response (i.e., memory enhancement or deficit) is inconsistent. A limited number of gene targets of NF-κB have been recently identified in neurons, including neurotrophic factors, calcium-regulating proteins, other transcription factors, and molecules associated with neuronal outgrowth and remodeling. In turn, several key molecules are activators of NF-κB, including protein kinase C and [Ca++]i. Thus, NF-κB signaling is complex and under the regulation of numerous proteins involved in activity-dependent synaptic plasticity. The purpose of this review is to highlight the literature detailing a role for NF-κB in synaptic plasticity, memory, and spatial navigation. Secondly, this review will synthesize the research evaluating gene targets of NF-κB in synaptic plasticity and memory. Although there is ample evidence to suggest a critical role for NF-κB in memory, our understanding of its gene targets in neurons is limited and only beginning to be appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NF-κB:

Nuclear factor kappa B

LTP:

Long-term potentiation

CREB:

cAMP response element-binding protein

AP-1:

Activating protein 1

(C/EBP):

CCAAT enhancer binding protein

EGR:

Early growth response factor

IKK:

IκB kinase

TNFα:

Tumor necrosis factor alpha

BDNF:

Brain-derived neurotrophic factor

NCAM:

Neural cell adhesion molecule

APP:

Amyloid precursor protein

ROS:

Reactive oxygen species

IEG:

Immediate early genes

LTD:

Long-term depression

PKA:

Protein kinase A

PKC:

Protein kinase C

(CaMKII):

Calcium-calmodulin kinase II

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

NMDA:

N-methyl-d-aspartic acid

CBP:

CREB binding protein

KO:

Knockout

8-RAM:

Radial arm maze

TMT:

Trimethyltin

MWM:

Morris water maze

PI3-K:

Phosphatidyl inositol 3-kinase

MEK:

Mitogen-activated protein kinase kinase

p38-MAPK:

p38-mitogen-activated protein kinase

DHPG:

(S)-3,5-dihydroxyphenylglycine

mGluR:

Metabotropic glutamate receptor

GABA:

Gamma-aminobutyric acid

IκBα-SR:

IκBα superrepressor

GAD 65:

Glutamate decarboxylase 65

NFAT:

Nuclear factor of activated T cells

MnSOD:

Manganese superoxide dismutase

ER:

Endoplasmic reticulum

VDCC:

Voltage-dependent calcium channel

NOS:

Nitric oxide synthase

References

  1. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14. doi:10.1186/1756-6606-5-14

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Squire LR, Davis HP (1981) The pharmacology of memory: a neurobiological perspective. Annu Rev Pharmacol Toxicol 21:323–356. doi:10.1146/annurev.pa.21.040181.001543

    CAS  PubMed  Google Scholar 

  3. Kandel ER (2001) The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21(5):565–611

    CAS  PubMed  Google Scholar 

  4. Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2008) Molecular biology of the gene, 6th edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  5. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89(1):121–145. doi:10.1152/physrev.00017.2008

    CAS  PubMed  Google Scholar 

  6. Alberini CM (ed) (2009) Transcription factors in synaptic plasticity and learning in memory. Encylopedia of neuroscience. Academic, Oxford

    Google Scholar 

  7. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    CAS  PubMed  Google Scholar 

  8. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224

    CAS  PubMed  Google Scholar 

  9. Aggarwal BB, Takada Y, Shishodia S, Gutierrez AM, Oommen OV, Ichikawa H, Baba Y, Kumar A (2004) Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42(4):341–353

    CAS  PubMed  Google Scholar 

  10. Mincheva-Tasheva S, Soler RM (2012) NF-kappaB signaling pathways: role in nervous system physiology and pathology. Neuroscientist 19(2):175–194. doi:10.1177/1073858412444007

    PubMed  Google Scholar 

  11. Bui NT, Livolsi A, Peyron JF, Prehn JH (2001) Activation of nuclear factor kappaB and Bcl-x survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J Cell Biol 152(4):753–764

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF (1996) Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86(5):787–798

    CAS  PubMed  Google Scholar 

  13. Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, Jegga AG, Aronow BJ, Ghosh G, Rickert RC, Karin M (2004) Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. Embo J 23(21):4202–4210. doi:10.1038/sj.emboj.7600391

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1(5):661–671

    CAS  PubMed  Google Scholar 

  15. Jacque E, Tchenio T, Piton G, Romeo PH, Baud V (2005) RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc Natl Acad Sci U S A 102(41):14635–14640. doi:10.1073/pnas.0507342102

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen LF, Mu Y, Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. Embo J 21(23):6539–6548

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen LF, Williams SA, Mu Y, Nakano H, Duerr JM, Buckbinder L, Greene WC (2005) NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25(18):7966–7975. doi:10.1128/MCB.25.18.7966-7975.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278(4):2758–2766. doi:10.1074/jbc.M209572200

    CAS  PubMed  Google Scholar 

  19. Chen LF, Greene WC (2005) Assessing acetylation of NF-kappaB. Methods 36(4):368–375. doi:10.1016/j.ymeth.2005.03.011

    CAS  PubMed  Google Scholar 

  20. Federman N, de la Fuente V, Zalcman G, Corbi N, Onori A, Passananti C, Romano A (2013) Nuclear factor kappaB-dependent histone acetylation is specifically involved in persistent forms of memory. J Neurosci 33 (17):7603–7614. doi: 10.1523/JNEUROSCI.4181-12.2013

    Google Scholar 

  21. Marini AM, Jiang X, Wu X, Tian F, Zhu D, Okagaki P, Lipsky RH (2004) Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci 22(2):121–130

    CAS  PubMed  Google Scholar 

  22. Chen YL, Law PY, Loh HH (2006) Nuclear factor kappaB signaling in opioid functions and receptor gene expression. J Neuroimmune Pharmacol 1(3):270–279. doi:10.1007/s11481-006-9028-0

    PubMed Central  PubMed  Google Scholar 

  23. Simpson CS, Morris BJ (2000) Regulation of neuronal cell adhesion molecule expression by NF-kappa B. J Biol Chem 275(22):16879–16884

    CAS  PubMed  Google Scholar 

  24. Barger SW, Mattson MP (1996) Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Brain Res Mol Brain Res 40(1):116–126

    CAS  PubMed  Google Scholar 

  25. Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49(6):681–697

    CAS  PubMed  Google Scholar 

  26. Sompol P, Xu Y, Ittarat W, Daosukho C, St Clair D (2006) NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis. J Mol Neurosci 29(3):279–288

    CAS  PubMed  Google Scholar 

  27. Tamatani M, Che YH, Matsuzaki H, Ogawa S, Okado H, Miyake S, Mizuno T, Tohyama M (1999) Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 274(13):8531–8538

    CAS  PubMed  Google Scholar 

  28. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic–excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12(1):139–153

    CAS  PubMed  Google Scholar 

  29. Furukawa K, Mattson MP (1998) The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 70(5):1876–1886

    CAS  PubMed  Google Scholar 

  30. Xu DG, Crocker SJ, Doucet JP, St-Jean M, Tamai K, Hakim AM, Ikeda JE, Liston P, Thompson CS, Korneluk RG, MacKenzie A, Robertson GS (1997) Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 3(9):997–1004

    CAS  PubMed  Google Scholar 

  31. Mattson MP (2005) NF-kappaB in the survival and plasticity of neurons. Neurochem Res 30(6–7):883–893

    CAS  PubMed  Google Scholar 

  32. Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107(3):247–254

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Mattson MP, Culmsee C, Yu Z, Camandola S (2000) Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 74(2):443–456

    CAS  PubMed  Google Scholar 

  34. O’Mahony A, Raber J, Montano M, Foehr E, Han V, Lu SM, Kwon H, LeFevour A, Chakraborty-Sett S, Greene WC (2006) NF-kappaB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol Cell Biol 26(19):7283–7298

    PubMed Central  PubMed  Google Scholar 

  35. Lubin FD, Sweatt JD (2007) The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55(6):942–957. doi:10.1016/j.neuron.2007.07.039

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, Kvello A, Reschke M, Spanagel R, Sprengel R, Wagner EF, Gass P (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23(27):9116–9122

    CAS  PubMed  Google Scholar 

  37. Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL, Chiao PJ (2004) NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol 24(17):7806–7819. doi:10.1128/MCB.24.17.7806-7819.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zheng L, Yang J, Liu Q, Yu F, Wu S, Jin C, Lu X, Zhang L, Du Y, Xi Q, Cai Y (2013) Lanthanum chloride impairs spatial learning and memory and downregulates NF-kappaB signalling pathway in rats. Arch Toxicol. doi:10.1007/s00204-013-1076-7

    Google Scholar 

  39. Morris R (2007) Theories of hippocampal function. In: Andersen P, Morris RGM, Amaral DG, Bliss TV, O’Keefe J (eds) The hippocampus book. Oxford Unversity Press, New York

    Google Scholar 

  40. Kandel ER (2009) The biology of memory: a forty-year perspective. J Neurosci 29(41):12748–12756. doi:10.1523/JNEUROSCI.3958-09.2009

    CAS  PubMed  Google Scholar 

  41. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    CAS  PubMed  Google Scholar 

  42. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790):1141–1144

    CAS  PubMed  Google Scholar 

  43. Coussens CM, Teyler TJ (1996) Protein kinase and phosphatase activity regulate the form of synaptic plasticity expressed. Synapse 24(2):97–103

    CAS  PubMed  Google Scholar 

  44. Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81(2):781–787

    CAS  PubMed  Google Scholar 

  45. Neveu D, Zucker RS (1996) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16(3):619–629

    CAS  PubMed  Google Scholar 

  46. Meberg PJ, Kinney WR, Valcourt EG, Routtenberg A (1996) Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. Brain Res Mol Brain Res 38(2):179–190

    CAS  PubMed  Google Scholar 

  47. Freudenthal R, Locatelli F, Hermitte G, Maldonado H, Lafourcade C, Delorenzi A, Romano A (1998) Kappa-B like DNA-binding activity is enhanced after spaced training that induces long-term memory in the crab Chasmagnathus. Neurosci Lett 242(3):143–146

    CAS  PubMed  Google Scholar 

  48. Freudenthal R, Romano A (2000) Participation of Rel/NF-kappaB transcription factors in long-term memory in the crab Chasmagnathus. Brain Res 855(2):274–281

    CAS  PubMed  Google Scholar 

  49. Merlo E, Freudenthal R, Romano A (2002) The IkappaB kinase inhibitor sulfasalazine impairs long-term memory in the crab Chasmagnathus. Neuroscience 112(1):161–172

    CAS  PubMed  Google Scholar 

  50. Yeh SH, Lin CH, Lee CF, Gean PW (2002) A requirement of nuclear factor-kappaB activation in fear-potentiated startle. J Biol Chem 277(48):46720–46729

    CAS  PubMed  Google Scholar 

  51. Kassed CA, Willing AE, Garbuzova-Davis S, Sanberg PR, Pennypacker KR (2002) Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning. Exp Neurol 176(2):277–288

    CAS  PubMed  Google Scholar 

  52. Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D (2003) NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 6(10):1072–1078

    CAS  PubMed  Google Scholar 

  53. Freudenthal R, Romano A, Routtenberg A (2004) Transcription factor NF-kappaB activation after in vivo perforant path LTP in mouse hippocampus. Hippocampus 14(6):677–683

    CAS  PubMed  Google Scholar 

  54. Yeh SH, Lin CH, Gean PW (2004) Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 65(5):1286–1292

    CAS  PubMed  Google Scholar 

  55. Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC, Pizzi M, Liou HC, Sweatt JD (2004) A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci 24(16):3933–3943. doi:10.1523/JNEUROSCI.5646-03.2004

    CAS  PubMed  Google Scholar 

  56. Kassed CA, Herkenham M (2004) NF-kappaB p50-deficient mice show reduced anxiety-like behaviors in tests of exploratory drive and anxiety. Behav Brain Res 154(2):577–584

    CAS  PubMed  Google Scholar 

  57. Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prullage M, Pfeiffer J, Lindecke A, Staiger V, Israel A, Kaltschmidt C, Memet S (2006) NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol 26(8):2936–2946

    CAS  PubMed Central  PubMed  Google Scholar 

  58. O’Riordan KJ, Huang IC, Pizzi M, Spano P, Boroni F, Egli R, Desai P, Fitch O, Malone L, Ahn HJ, Liou HC, Sweatt JD, Levenson JM (2006) Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors. J Neurosci 26(18):4870–4879. doi:10.1523/JNEUROSCI.4527-05.2006

    PubMed  Google Scholar 

  59. Vernon DO, Garbuzova-Davis S, Desjarlais T, Singh Rasile R, Sanberg PR, Willing AE, Pennypacker KR (2006) Reduced nuclear factor kappa B activation in dentate gyrus after active avoidance training. Brain Res 1104(1):39–44. doi:10.1016/j.brainres.2006.05.070

    CAS  PubMed  Google Scholar 

  60. Ji C, Aisa HA, Yang N, Li Q, Wang T, Zhang L, Qu K, Zhu HB, Zuo PP (2008) Gossypium herbaceam extracts inhibited NF-kappaB activation to attenuate spatial memory impairment and hippocampal neurodegeneration induced by amyloid-beta in rats. J Alzheimers Dis 14(3):271–283

    PubMed  Google Scholar 

  61. Boersma MC, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK (2011) A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. J Neurosci 31(14):5414–5425. doi:10.1523/JNEUROSCI.2456-10.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  62. de la Fuente V, Freudenthal R, Romano A (2011) Reconsolidation or extinction: transcription factor switch in the determination of memory course after retrieval. J Neurosci 31(15):5562–5573. doi:10.1523/JNEUROSCI.6066-10.2011

    PubMed  Google Scholar 

  63. O’Sullivan NC, Croydon L, McGettigan PA, Pickering M, Murphy KJ (2010) Hippocampal region-specific regulation of NF-kappaB may contribute to learning-associated synaptic reorganisation. Brain Res Bull 81(4–5):385–390. doi:10.1016/j.brainresbull.2009.11.001

    PubMed  Google Scholar 

  64. He FQ, Qiu BY, Zhang XH, Li TK, Xie Q, Cui DJ, Huang XL, Gan HT (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-kappaB activation in a rat model of Alzheimer’s disease induced by amyloid-beta(1-42). Brain Res 1384:89–96. doi:10.1016/j.brainres.2011.01.103

    CAS  PubMed  Google Scholar 

  65. Merlo E, Freudenthal R, Maldonado H, Romano A (2005) Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn Mem 12(1):23–29

    PubMed Central  PubMed  Google Scholar 

  66. Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35(2):151–159

    CAS  PubMed  Google Scholar 

  67. Oikawa K, Odero GL, Platt E, Neuendorff M, Hatherell A, Bernstein MJ, Albensi BC (2012) NF-kB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus. BMC Neurosci 13:45

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    CAS  PubMed  Google Scholar 

  69. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376(6536):167–170

    CAS  PubMed  Google Scholar 

  70. Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA, Scott M, Doerschuk CM, Hynes RO, Baltimore D (2001) Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. J Immunol 167(3):1592–1600

    CAS  PubMed  Google Scholar 

  71. O’Keefe J, Nadel L (1978) The hippocampus as a cogntive map. University of Oxford Press, London

    Google Scholar 

  72. Sekeres MJ, Neve RL, Frankland PW, Josselyn SA (2013) Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learn Mem 17(6):280–283. doi:10.1101/lm.1785510

    Google Scholar 

  73. Yiu AP, Rashid AJ, Josselyn SA (2011) Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 36(11):2169–2186. doi:10.1038/npp.2011.107

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Denis-Donini S, Dellarole A, Crociara P, Francese MT, Bortolotto V, Quadrato G, Canonico PL, Orsetti M, Ghi P, Memo M, Bonini SA, Ferrari-Toninelli G, Grilli M (2008) Impaired adult neurogenesis associated with short-term memory defects in NF-kappaB p50-deficient mice. J Neurosci 28(15):3911–3919. doi:10.1523/JNEUROSCI.0148-08.2008

    CAS  PubMed  Google Scholar 

  75. Lehmann ML, Brachman RA, Listwak SJ, Herkenham M (2010) NF-kappaB activity affects learning in aversive tasks: possible actions via modulation of the stress axis. Brain Behav Immun 24(6):1008–1017. doi:10.1016/j.bbi.2010.04.005

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Phelps CB, Sengchanthalangsy LL, Malek S, Ghosh G (2000) Mechanism of kappa B DNA binding by Rel/NF-kappa B dimers. J Biol Chem 275(32):24392–24399. doi:10.1074/jbc.M003784200

    CAS  PubMed  Google Scholar 

  77. O’Sullivan NC, McGettigan PA, Sheridan GK, Pickering M, Conboy L, O’Connor JJ, Moynagh PN, Higgins DG, Regan CM, Murphy KJ (2007) Temporal change in gene expression in the rat dentate gyrus following passive avoidance learning. J Neurochem 101(4):1085–1098. doi:10.1111/j.1471-4159.2006.04418.x

    PubMed  Google Scholar 

  78. Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615–626

    CAS  PubMed  Google Scholar 

  79. Huang YY, Kandel ER (1994) Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem 1(1):74–82

    CAS  PubMed  Google Scholar 

  80. Taylor SS, Kim C, Vigil D, Haste NM, Yang J, Wu J, Anand GS (2005) Dynamics of signaling by PKA. Biochim Biophys Acta 1754(1–2):25–37

    CAS  PubMed  Google Scholar 

  81. Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23(23):4878–4884

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Grilli M, Ribola M, Alberici A, Valerio A, Memo M, Spano P (1995) Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 270(45):26774–26777

    CAS  PubMed  Google Scholar 

  83. Mettouchi A, Cabon F, Montreau N, Dejong V, Vernier P, Gherzi R, Mercier G, Binetruy B (1997) The c-Jun-induced transformation process involves complex regulation of tenascin-C expression. Mol Cell Biol 17(6):3202–3209

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP (2003) Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol 170(2):795–804

    CAS  PubMed  Google Scholar 

  85. Odero GL, Oikawa K, Glazner KA, Schapansky J, Grossman D, Thiessen JD, Motnenko A, Ge N, Martin M, Glazner GW, Albensi BC (2010) Evidence for the involvement of calbindin D28k in the presenilin 1 model of Alzheimer’s disease. Neuroscience 169(1):532–543. doi:10.1016/j.neuroscience.2010.04.004

    CAS  PubMed  Google Scholar 

  86. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 472:341–357

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Berggard T, Miron S, Onnerfjord P, Thulin E, Akerfeldt KS, Enghild JJ, Akke M, Linse S (2002) Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. J Biol Chem 277(19):16662–16672. doi:10.1074/jbc.M200415200

    CAS  PubMed  Google Scholar 

  88. Karadi K, Janszky J, Gyimesi C, Horvath Z, Lucza T, Doczi T, Kallai J, Abraham H (2012) Correlation between calbindin expression in granule cells of the resected hippocampal dentate gyrus and verbal memory in temporal lobe epilepsy. Epilepsy Behav 25(1):110–119. doi:10.1016/j.yebeh.2012.06.007

    PubMed  Google Scholar 

  89. Dumas TC, Powers EC, Tarapore PE, Sapolsky RM (2004) Overexpression of calbindin D(28k) in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal-dependent memory. Hippocampus 14(6):701–709. doi:10.1002/hipo.10210

    CAS  PubMed  Google Scholar 

  90. Soontornniyomkij V, Risbrough VB, Young JW, Soontornniyomkij B, Jeste DV, Achim CL (2012) Hippocampal calbindin-1 immunoreactivity correlate of recognition memory performance in aged mice. Neurosci Lett 516(1):161–165. doi:10.1016/j.neulet.2012.03.092

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Martinian L, Catarino CB, Thompson P, Sisodiya SM, Thom M (2012) Calbindin D28K expression in relation to granule cell dispersion, mossy fibre sprouting and memory impairment in hippocampal sclerosis: a surgical and post mortem series. Epilepsy Res 98(1):14–24. doi:10.1016/j.eplepsyres.2011.08.011

    CAS  PubMed  Google Scholar 

  92. Parent A, Linden DJ, Sisodia SS, Borchelt DR (1999) Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis 6(1):56–62

    CAS  PubMed  Google Scholar 

  93. Auffret A, Gautheron V, Mattson MP, Mariani J, Rovira C (2010) Progressive age-related impairment of the late long-term potentiation in Alzheimer’s disease presenilin-1 mutant knock-in mice. J Alzheimers Dis 19(3):1021–1033. doi:10.3233/JAD-2010-1302

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Huang HF, Guo F, Cao YZ, Shi W, Xia Q (2012) Neuroprotection by manganese superoxide dismutase (MnSOD) mimics: antioxidant effect and oxidative stress regulation in acute experimental stroke. CNS Neurosci Ther 18 (10):811–818. doi:10.1111/j.1755-5949.2012.00380.x

  95. Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14 (10):2013–2054. doi:10.1089/ars.2010.3208

  96. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. Embo J 15(17):4682–4690

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Xia Y, Rao J, Yao A, Zhang F, Li G, Wang X, Lu L (2012) Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3beta/NF-kappaB-mediated protective signaling in mice. Eur J Pharmacol 697 (1–3):117–125. doi: 10.1016/j.ejphar.2012.09.009

    Google Scholar 

  98. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18(2):687–697

    CAS  PubMed  Google Scholar 

  99. Kiningham KK, Xu Y, Daosukho C, Popova B, St Clair DK (2001) Nuclear factor kappaB-dependent mechanisms coordinate the synergistic effect of PMA and cytokines on the induction of superoxide dismutase 2. Biochem J 353(Pt 1):147–156

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, Scheff SW (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19(15):6248–6256

    CAS  PubMed  Google Scholar 

  101. Pizzi M, Sarnico I, Boroni F, Benarese M, Steimberg N, Mazzoleni G, Dietz GP, Bahr M, Liou HC, Spano PF (2005) NF-kappaB factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ 12(7):761–772. doi:10.1038/sj.cdd.4401598

    CAS  PubMed  Google Scholar 

  102. Shan X, Chi L, Ke Y, Luo C, Qian S, Gozal D, Liu R (2007) Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage. Neurobiol Dis 28(2):206–215. doi:10.1016/j.nbd.2007.07.013

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hu D, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87(3):372–384. doi:10.1016/j.nlm.2006.10.003

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Lee WH, Kumar A, Rani A, Herrera J, Xu J, Someya S, Foster TC (2012) Influence of viral vector-mediated delivery of superoxide dismutase and catalase to the hippocampus on spatial learning and memory during aging. Antioxid Redox Signal 16(4):339–350. doi:10.1089/ars.2011.4054

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT (2009) Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. FASEB J 23(8):2459–2466. doi:10.1096/fj.09-132928

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381. doi:10.1038/ng1295-376

    CAS  PubMed  Google Scholar 

  107. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93(18):9782–9787

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Corniola R, Zou Y, Leu D, Fike JR, Huang TT (2012) Paradoxical relationship between Mn superoxide dismutase deficiency and radiation-induced cognitive defects. PLoS One 7 (11):e49367. doi:10.1371/journal.pone.0049367

  109. Musumeci G, Minichiello L (2011) BDNF-TrkB signalling in fear learning: from genetics to neural networks. Rev Neurosci 22(3):303–315. doi:10.1515/RNS.2011.031

    CAS  PubMed  Google Scholar 

  110. Bekinschtein P, Oomen CA, Saksida LM, Bussey TJ (2011) Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin Cell Dev Biol 22(5):536–542. doi:10.1016/j.semcdb.2011.07.002

    CAS  PubMed  Google Scholar 

  111. Saha RN, Liu X, Pahan K (2006) Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J Neuroimmune Pharmacol 1(3):212–222. doi:10.1007/s11481-006-9020-8

    PubMed Central  PubMed  Google Scholar 

  112. Begni S, Moraschi S, Bignotti S, Fumagalli F, Rillosi L, Perez J, Gennarelli M (2003) Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biol Psychiatry 53(7):617–619

    CAS  PubMed  Google Scholar 

  113. Richter M, Suau P, Ponte I (2002) Sequence and analysis of the 5′ flanking and 5′ untranslated regions of the rat N-methyl-D-aspartate receptor 2A gene. Gene 295(1):135–142

    CAS  PubMed  Google Scholar 

  114. Chiechio S, Copani A, De Petris L, Morales ME, Nicoletti F, Gereau RW (2006) Transcriptional regulation of metabotropic glutamate receptor 2/3 expression by the NF-kappaB pathway in primary dorsal root ganglia neurons: a possible mechanism for the analgesic effect of L-acetylcarnitine. Mol Pain 2:20. doi:10.1186/1744-8069-2-20

    PubMed Central  PubMed  Google Scholar 

  115. Albensi BC (2007) The NMDA receptor/ion channel complex: a drug target for modulating synaptic plasticity and excitotoxicity. Curr Pharm Des 13(31):3185–3194

    CAS  PubMed  Google Scholar 

  116. Echeverria V, Burgess S, Gamble-George J, Zeitlin R, Lin X, Cao C, Arendash GW (2009) Sorafenib inhibits nuclear factor kappa B, decreases inducible nitric oxide synthase and cyclooxygenase-2 expression, and restores working memory in APPswe mice. Neuroscience 162(4):1220–1231. doi:10.1016/j.neuroscience.2009.05.019

    CAS  PubMed  Google Scholar 

  117. Benito E, Valor LM, Jimenez-Minchan M, Huber W, Barco A (2011) cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression. J Neurosci 31(50):18237–18250. doi:10.1523/JNEUROSCI.4554-11.2011

    CAS  PubMed  Google Scholar 

  118. Taubenfeld SM, Wiig KA, Monti B, Dolan B, Pollonini G, Alberini CM (2001) Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein [beta] and [delta] co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. J Neurosci 21(1):84–91

    CAS  PubMed  Google Scholar 

  119. Poirier R, Cheval H, Mailhes C, Garel S, Charnay P, Davis S, Laroche S (2008) Distinct functions of egr gene family members in cognitive processes. Front Neurosci 2(1):47–55. doi:10.3389/neuro.01.002.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40(4):695–701

    CAS  PubMed  Google Scholar 

  121. Carayol N, Chen J, Yang F, Jin T, Jin L, States D, Wang CY (2006) A dominant function of IKK/NF-kappaB signaling in global lipopolysaccharide-induced gene expression. J Biol Chem 281(41):31142–31151. doi:10.1074/jbc.M603417200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Sciences and Engineering Research Council (in separate grants to B.C.A. and D.M.K.). Dr. Ben Albensi is a Research Affiliate at the University of Manitoba’s Centre on Aging and holds the Honourable Douglas Everett, Patricia Everett and the Royal Canadian Properties Endowment Fund Chair. Dr. Debbie Kelly holds a Canada Research Chair in Comparative Cognition.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedict C. Albensi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, W.M., Stoesz, B.M., Kelly, D.M. et al. Roles for NF-κB and Gene Targets of NF-κB in Synaptic Plasticity, Memory, and Navigation. Mol Neurobiol 49, 757–770 (2014). https://doi.org/10.1007/s12035-013-8555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8555-y

Keywords

Navigation