Skip to main content

Advertisement

Log in

Granulocyte Macrophage Colony-Stimulating Factor Shows Anti-apoptotic Activity via the PI3K–NF-κB–HIF-1α–Survivin Pathway in Mouse Neural Progenitor Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic cytokine that plays a crucial role in regulating the proliferation, differentiation, and survival of hematopoietic cells. Recent studies have shown that GM-CSF also has anti-apoptotic effects and regulates the expression of anti-apoptotic genes including Bcl-2 family proteins in neuronal cells in vitro and in vivo. However, the mechanism underlying the anti-apoptotic function of GM-CSF is not well understood. In the present work, we examined the role of phosphoinositide 3-kinase (PI3K)–AKT signal pathway in the anti-apoptotic activity of GM-CSF in mouse neural progenitor cells (NPCs). In terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, the anti-apoptotic effect of GM-CSF (apoptotic population of approximately 8.17 %) on staurosporine-induced apoptosis of NPCs (31.09 %) was significantly blocked by LY294002, an inhibitor of PI3K signal (24.04 %). We found that the PI3K–AKT signal pathway induced by GM-CSF treatment activated nuclear factor κB (NF-κB) and increased the expression of hypoxia-inducible factor 1α (HIF-1α) in normoxic conditions. Analyses using specific small interfering RNAs (siRNAs) showed that NF-κB was an upstream molecule of HIF-1α and activated its expression at the mRNA level. Further analyses using the siRNAs and chromatin immunoprecipitation (ChIP) showed that HIF-1α was responsible for the induced expression of survivin, a member of the inhibitor of apoptosis proteins (IAPs). Each of the specific siRNAs for NF-κB, HIF-1α, and survivin inhibited significantly the anti-apoptotic activity of GM-CSF on the staurosporine-induced apoptosis in NPCs in TUNEL assays. The results of this study showed the downstream signals and mechanism of PI3K/AKT-mediated anti-apoptotic activity of GM-CSF in NPCs, particularly revealing the role of the NF-κB–HIF-1α–survivin cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30

    Article  CAS  PubMed  Google Scholar 

  2. de Groot RP, Coffer PJ, Koenderman L (1998) Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 10:619–628

    Article  PubMed  Google Scholar 

  3. Kim JK, Choi BH, Park HC, Park SR, Kim YS, Yoon SH, Park H, Kim EY, Ha Y (2004) Effects of GM-CSF on the neural progenitor cells. Neuroreport 15:2161–2165

    Article  CAS  PubMed  Google Scholar 

  4. Franzen R, Bouhy D, Schoenen J (2004) Nervous system injury: focus on the inflammatory cytokine ‘granulocyte-macrophage colony stimulating factor’. Neurosci Lett 361:76–78

    Article  CAS  PubMed  Google Scholar 

  5. Kannan Y, Moriyama M, Sugano T, Yamate J, Kuwamura M, Kagaya A, Kiso Y (2000) Neurotrophic action of interleukin 3 and granulocyte-macrophage colony stimulating factor on murine sympathetic neurons. Neuroimmunomodulation 8:132–141

    Article  CAS  PubMed  Google Scholar 

  6. Lin X, Zhang Y, Dong J, Zhu X, Ye M, Shi J, Lu J, Di Q, Shi J, Liu W (2007) GM-CSF enhances neural differentiation of bone marrow stromal cells. Neuroreport 18:1113–1117

    Article  PubMed  Google Scholar 

  7. Sayani F, Montero-Julian FA, Ranchin V, Prevost JM, Flavetta S, Zhu W, Woodman RC, Brailly H, Brown CB (2000) Identification of the soluble granulocyte-macrophage colony stimulating factor receptor protein in vivo. Blood 95:461–469

    CAS  PubMed  Google Scholar 

  8. Choi JK, Choi BH, Ha Y, Park H, Yoon SH, Park HC, Park SR (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci Lett 420:217–222

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Kim JM, Kong TH, Park SR, Ha Y, Kim MH, Park H, Yoon SH, Park HC, Park JO, Min B-H, Choi BH (2009) GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J Neurol Sci 277:87–97

    Article  CAS  PubMed  Google Scholar 

  10. Ha Y, Kim YS, Cho JM, Yoon SH, Park SR, Yoon DH, Kim EY, Park HC (2005) Role of granulocyte macrophage colony stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J Neurosurg Spine 2:55–61

    Article  PubMed  Google Scholar 

  11. Huang X, Choi JK, Park SR, Ha Y, Park H, Yoon SH, Park HC, Park JO, Choi BH (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci Res 58:50–57

    Article  CAS  PubMed  Google Scholar 

  12. Kim NK, Choi BH, Huang X, Snyder BJ, Bukhari S, Kong TH, Park H, Park HC, Park SR, Ha Y (2009) Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson's disease model. Eur J Neurosci 29:891–900

    Article  PubMed  Google Scholar 

  13. Kong TH, Choi J-K, Park H, Choi BH, Snyder BJ, Bukhari S, Kim N-K, Huang X, Park SR, Park HC, Ha Y (2009) Reduction in programmed cell death and improvement in functional outcome of transient focal cerebral ischemia after administration of granulocyte-macrophage colony-stimulating factor in rats. J Neurosurg 111:155–163

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa T, Suga S, Kawase T, Toda M (2006) Intracarotid injection of granulocyte-macrophage colony-stimulating factor induces neuroprotection in a rat transient middle cerebral artery occlusion model. Brain Res 1089:179–185

    Article  CAS  PubMed  Google Scholar 

  15. Chio BH, Ha Y, Park H, Yoon SH, Park HC, Min BH, Park SR (2006) Application of GM-CSF for the repair of spinal cord injury. Tissue Eng Regen Med 3:21–26

    Google Scholar 

  16. Choi JK, Kim YS, Ha Y, Park SR, Park H, Park HC, Choi BH, Kim BS (2007) Effect of GM-CSF and NGF on the neural cell death after spinal cord injury of rats. Tissue Eng Regen Med 4:79–83

    Google Scholar 

  17. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, Park H (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11:913–922

    Article  CAS  PubMed  Google Scholar 

  18. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25:2066–2073

    Article  PubMed  Google Scholar 

  19. Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7:249–257

    Article  CAS  PubMed  Google Scholar 

  20. Rapp UR, Rennefahrt U, Troppmair J (2004) Bcl-2 proteins: master switches at the intersection of death signaling and the survival control by raf kinase. Biochem Biophy Acta 1644:149–158

    Article  CAS  Google Scholar 

  21. Guthridge MA, Stomski FC, Thomas D, Woodcock JM, Bagley CJ, Berndt MC, Lopez AF (1998) Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16:301–313

    Article  CAS  PubMed  Google Scholar 

  22. Choi JK, Kim KH, Park H, Park SR, Choi BH (2010) Granulocyte macrophage-colony stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis 16:127–134

    Article  Google Scholar 

  23. Klein JB, Rane MJ, Scherzer JA, Coxon PY, Kettritz R, Mathiesen JM, Buridi A, McLeish KR (2000) Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. J Immunol 164:4286–4291

    CAS  PubMed  Google Scholar 

  24. Kotone-Miyahara Y, Yamashita K, Lee K-K, Yonehara S, Uchiyama T, Sasada M, Takahashi A (2004) Short-term delay of Fas-stimulated apoptosis by GM-CSF as a result of temporary suppression of FADD recruitment in neutrophils: evidence implicating phosphatidylinositol 3-kinase and MEK1–ERK1/2 pathways downstream of classical protein kinase C. J Leukoc Biol 76:1047–1056

    Article  CAS  PubMed  Google Scholar 

  25. Guthridge MA, Barry EF, Felquer FA, McClure BJ, Stomski FC, Ramshaw H, Lopez AF (2004) The phosphoserine-585-dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hematopoietic cell survival through activation of NF-kB and induction of bcl-2. Blood 103:820–827

    Article  CAS  PubMed  Google Scholar 

  26. Wu C, Fujihara H, Yao J, Qi S, Li H, Shimoji K, Baba H (2003) Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke 34:1803–1808

    Article  CAS  PubMed  Google Scholar 

  27. Davies AM (1995) The Bcl-2 family of proteins, and the regulation of neuronal survival. Trends Neurosci 18:355–358

    Article  CAS  PubMed  Google Scholar 

  28. Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW (2002) DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Phamacol Exp Ther 303:124–131

    Article  CAS  Google Scholar 

  29. Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L (2006) Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating surviving gene expression. J Biol Chem 281:25903–25914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Miike S, Nakao A, Hiraguri M, Kurasawa K, Saito Y, Iwamoto I (1999) Involvement of JAK2, but not PI3-kinase/Akt and MAP kinase pathways, in anti-apoptotic signals of GM-CSF in human eosinophils. J Leukoc Biol 65:700–706

    CAS  PubMed  Google Scholar 

  31. Antonsson A, Persson JL (2009) Induction of apoptosis by staurosporine involves the inhibition of expression of the major cell cycle proteins at the G2/M checkpoint accompanied by alterations in Erk and Akt kinase activities. Anticancer Res 29:2893–2898

    CAS  PubMed  Google Scholar 

  32. Carter BZ, Milella M, Altieri DC, Andreeff M (2001) Cytokine-regulated expression of survivin in myeloid leukemia. Blood 97:2784–2790

    Article  CAS  PubMed  Google Scholar 

  33. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277:38205–38211

    Article  CAS  PubMed  Google Scholar 

  34. Qiao Q, Nozaki Y, Sakoe K, Komatsu N, Kirito K (2010) NF-κB mediates aberrant activation of HIF-1 in malignant lymphoma. Exp Hematol 38:1199–1208

    Article  CAS  PubMed  Google Scholar 

  35. van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J 412:477–484

    Article  PubMed Central  PubMed  Google Scholar 

  36. Chen YQ, Zhao CL, Li W (2009) Effect of hypoxia-inducible factor-1alpha on transcription of survivin in non-small cell lung cancer. J Exp Clin Cancer Res 28:29

    Article  PubMed Central  PubMed  Google Scholar 

  37. Chen B, Yuping S, Ni J (2012) Rapamycin decreases survivin expression to induce NSCLC cell apoptosis under hypoxia through inhibiting HIF-1α induction. Mol Biol Rep 39:185–191

    Article  CAS  PubMed  Google Scholar 

  38. Wang K, Brems JJ, Gamelli RL, Holterman AX (2010) Survivin signaling is regulated through NF-κB pathway during glycochenodeoxycholate-induced hepatocyte apoptosis. Biochem Biophys Acta 1803:1368–1375

    Article  CAS  PubMed  Google Scholar 

  39. Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Kappas C, Kitsiou-Tzeli S, Tsezou A (2011) Survivin regulation by HER2 through NF-κB and c-myc in irradiated breast cancer cells. J Cell Mol Med 15:1542–1550

    Article  CAS  PubMed  Google Scholar 

  40. Lin J, Guan Z, Wang C, Feng L, Zheng Y, Caicedo E, Bearth E, Peng JR, Gaffney P, Ondrey FG (2010) Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-κB/survivin and phosphoinositide 3-kinase/Akt signaling pathways. Clin Cancer Res 16:77–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kinoshita J, Fushida S, Harada S, Makino I, Nakamura K, Oyama K, Fujita H, Ninomiya I, Fujimura T, Kayahara M, Ohta T (2010) PSK enhances the efficacy of docetaxel in human gastric cancer cells through inhibition of nuclear factor-kappaB activation and survivin expression. Int J Oncol 36:593–600

    Article  CAS  PubMed  Google Scholar 

  42. Geng Y, Walls KC, Ghosh AP, Akhtar RS, Klocke BJ, Roth KA (2010) Cytoplasmic p53 and activated Bax regulate p53-dependent, transcription-independent neural precursor cell apoptosis. J Histochem Cytochem 58:265–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Education, Science & Technology (2009–0079196) and the Inha University Research Grant, Republic of Korea.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Hyune Choi.

Additional information

Jung Kyoung Choi and Kil Hwan Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.K., Kim, K.H., Park, S.R. et al. Granulocyte Macrophage Colony-Stimulating Factor Shows Anti-apoptotic Activity via the PI3K–NF-κB–HIF-1α–Survivin Pathway in Mouse Neural Progenitor Cells. Mol Neurobiol 49, 724–733 (2014). https://doi.org/10.1007/s12035-013-8550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8550-3

Keywords

Navigation