Skip to main content

Advertisement

Log in

Isoprenoids and Related Pharmacological Interventions: Potential Application in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein–protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  2. Lane KT, Beese LS (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47:681–699

    Article  PubMed  CAS  Google Scholar 

  3. McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63:255–267

    Article  PubMed  CAS  Google Scholar 

  4. 4S Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389

    Google Scholar 

  5. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009

    Article  PubMed  CAS  Google Scholar 

  6. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    Article  PubMed  CAS  Google Scholar 

  7. Jones PH (2003) Comparing HMG-CoA reductase inhibitors. Clin Cardiol 26:I15–20

    Article  PubMed  Google Scholar 

  8. Shitara Y, Sugiyama Y (2006) Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 112:71–105

    Article  PubMed  CAS  Google Scholar 

  9. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164

    Article  PubMed  CAS  Google Scholar 

  10. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19:117–125

    Article  PubMed  CAS  Google Scholar 

  11. Yee LL, Wright EA (2011) Pitavastatin calcium: clinical review of a new antihyperlipidemic medication. Clin Ther 33:1023–1042

    Article  PubMed  CAS  Google Scholar 

  12. Liao JK (2002) Isoprenoids as mediators of the biological effects of statins. J Clin Invest 110:285–288

    PubMed  CAS  Google Scholar 

  13. Vaughan CJ (2003) Prevention of stroke and dementia with statins: effects beyond lipid lowering. Am J Cardiol 91:23B–29B

    Article  PubMed  CAS  Google Scholar 

  14. Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000) HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283:3205–3210

    Article  PubMed  CAS  Google Scholar 

  15. Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, Preiningerova J, Rizzo M, Singh I (2004) Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363:1607–1608

    Article  PubMed  CAS  Google Scholar 

  16. Shepardson NE, Shankar GM, Selkoe DJ (2010) Cholesterol level and statin use in Alzheimer disease: II. review of human trials and recommendations. Arch Neurol 68:1385–1392

    Article  Google Scholar 

  17. Fernandez Martinez M, Castro Flores J, de Las P, Heras S, Mandaluniz Lekumberri A, Gordejuela Menocal M, Zarranz Imirizaldu JJ (2008) Risk factors for dementia in the epidemiological study of Munguialde County (Basque Country-Spain). BMC Neurol 8:39

    Article  PubMed  Google Scholar 

  18. Jarvik GP, Wijsman EM, Kukull WA, Schellenberg GD, Yu C, Larson EB (1995) Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer's disease: a case–control study. Neurology 45:1092–1096

    Article  PubMed  CAS  Google Scholar 

  19. Pappolla MA, Bryant-Thomas TK, Herbert D, Pacheco J, Fabra Garcia M, Manjon M, Girones X, Henry TL, Matsubara E, Zambon D, Wolozin B, Sano M, Cruz-Sanchez FF, Thal LJ, Petanceska SS, Refolo LM (2003) Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 61:199–205

    Article  PubMed  CAS  Google Scholar 

  20. Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA 98:5856–5861

    Article  PubMed  CAS  Google Scholar 

  21. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci USA 98:5815–5820

    Article  PubMed  CAS  Google Scholar 

  22. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464

    Article  PubMed  CAS  Google Scholar 

  23. Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619

    Article  PubMed  CAS  Google Scholar 

  24. Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S (2005) Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med 2:e18

    Article  PubMed  CAS  Google Scholar 

  25. Cole SL, Grudzien A, Manhart IO, Kelly BL, Oakley H, Vassar R (2005) Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem 280:18755–18770

    Article  PubMed  CAS  Google Scholar 

  26. Ostrowski SM, Wilkinson BL, Golde TE, Landreth G (2007) Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem 282:26832–26844

    Article  PubMed  CAS  Google Scholar 

  27. Zhou Y, Suram A, Venugopal C, Prakasam A, Lin S, Su Y, Li B, Paul SM, Sambamurti K (2008) Geranylgeranyl pyrophosphate stimulates gamma-secretase to increase the generation of Abeta and APP-CTFgamma. FASEB J 22:47–54

    Article  PubMed  CAS  Google Scholar 

  28. Hooff GP, Peters I, Wood WG, Muller WE, Eckert GP (2010) Modulation of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate in neuroblastoma SH-SY5Y-APP695 cells: impact on amyloid beta-protein production. Mol Neurobiol 41:341–350

    Article  PubMed  CAS  Google Scholar 

  29. Wolozin B, Manger J, Bryant R, Cordy J, Green RC, McKee A (2006) Re-assessing the relationship between cholesterol, statins and Alzheimer's disease. Acta Neurol Scand Suppl 185:63–70

    Article  PubMed  CAS  Google Scholar 

  30. Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60:729–739

    Article  PubMed  CAS  Google Scholar 

  31. Shinohara M, Sato N, Kurinami H, Takeuchi D, Takeda S, Shimamura M, Yamashita T, Uchiyama Y, Rakugi H, Morishita R (2010) Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem 285:22091–22102

    Article  PubMed  CAS  Google Scholar 

  32. Eikelenboom P, Veerhuis R, Exel EV, Hoozemans JJ, Rozemuller AJ, van Gool WA (2011) The early involvement of the innate immunity in the pathogenesis of late-onset Alzheimer's disease: neuropathological, epidemiological and genetic evidence. Curr Alzheimer Res 8:142–150

    PubMed  CAS  Google Scholar 

  33. Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 52:487–501

    Article  PubMed  CAS  Google Scholar 

  34. Bauer J, Strauss S, Schreiter-Gasser U, Ganter U, Schlegel P, Witt I, Yolk B, Berger M (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett 285:111–114

    Article  PubMed  CAS  Google Scholar 

  35. Coria F, Castano E, Prelli F, Larrondo-Lillo M, van Duinen S, Shelanski ML, Frangione B (1988) Isolation and characterization of amyloid P component from Alzheimer's disease and other types of cerebral amyloidosis. Lab Invest 58:454–458

    PubMed  CAS  Google Scholar 

  36. Eikelenboom P, Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 57:239–242

    Article  PubMed  CAS  Google Scholar 

  37. Cameron B, Landreth GE (2010) Inflammation, microglia, and Alzheimer's disease. Neurobiol Dis 37:503–509

    Article  PubMed  CAS  Google Scholar 

  38. Fuller S, Steele M, Munch G (2010) Activated astroglia during chronic inflammation in Alzheimer's disease–do they neglect their neurosupportive roles? Mutat Res 690:40–49

    Article  PubMed  CAS  Google Scholar 

  39. Morgan K (2011) The three new pathways leading to Alzheimer's disease. Neuropathol Appl Neurobiol 37:353–357

    Article  PubMed  CAS  Google Scholar 

  40. Menge T, Hartung HP, Stuve O (2005) Statins–a cure-all for the brain? Nat Rev Neurosci 6:325–331

    Article  PubMed  CAS  Google Scholar 

  41. Sun YX, Crisby M, Lindgren S, Janciauskiene S (2003) Pravastatin inhibits pro-inflammatory effects of Alzheimer's peptide Abeta(1-42) in glioma cell culture in vitro. Pharmacol Res 47:119–126

    Article  PubMed  CAS  Google Scholar 

  42. Wang H, Lynch JR, Song P, Yang HJ, Yates RB, Mace B, Warner DS, Guyton JR, Laskowitz DT (2007) Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp Neurol 206(1):59–69

    Article  PubMed  CAS  Google Scholar 

  43. Townsend KP, Shytle DR, Bai Y, San N, Zeng J, Freeman M, Mori T, Fernandez F, Morgan D, Sanberg P, Tan J (2004) Lovastatin modulation of microglial activation via suppression of functional CD40 expression. J Neurosci Res 78:167–176

    Article  PubMed  CAS  Google Scholar 

  44. Pahan K, Sheikh FG, Namboodiri AM, Singh I (1997) Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 100:2671–2679

    Article  PubMed  CAS  Google Scholar 

  45. Paintlia AS, Paintlia MK, Singh AK, Singh I (2008) Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis. Mol Pharmacol 73:1381–1393

    Article  PubMed  CAS  Google Scholar 

  46. Lindberg C, Crisby M, Winblad B, Schultzberg M (2005) Effects of statins on microglia. J Neurosci Res 82:10–19

    Article  PubMed  CAS  Google Scholar 

  47. Kou J, Kim HD, Jin J, Cao D, Li L, Lalonde R, Fukuchi K (2010) Simvastatin enhances immune responses to Abeta vaccination and attenuates vaccination-induced behavioral alterations. Brain Res 1356:102–111

    Article  PubMed  CAS  Google Scholar 

  48. Cordle A, Koenigsknecht-Talboo J, Wilkinson B, Limpert A, Landreth G (2005) Mechanisms of statin-mediated inhibition of small G-protein function. J Biol Chem 280:34202–34209

    Article  PubMed  CAS  Google Scholar 

  49. Cordle A, Landreth G (2005) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses. J Neurosci 25:299–307

    Article  PubMed  CAS  Google Scholar 

  50. Franke C, Noldner M, Abdel-Kader R, Johnson-Anuna LN, Gibson Wood W, Muller WE, Eckert GP (2007) Bcl-2 upregulation and neuroprotection in guinea pig brain following chronic simvastatin treatment. Neurobiol Dis 25:438–445

    Article  PubMed  CAS  Google Scholar 

  51. Johnson-Anuna LN, Eckert GP, Keller JH, Igbavboa U, Franke C, Fechner T, Schubert-Zsilavecz M, Karas M, Muller WE, Wood WG (2005) Chronic administration of statins alters multiple gene expression patterns in mouse cerebral cortex. J Pharmacol Exp Ther 312:786–793

    Article  PubMed  CAS  Google Scholar 

  52. Famer D, Crisby M (2004) Rosuvastatin reduces caspase-3 activity and up-regulates alpha-secretase in human neuroblastoma SH-SY5Y cells exposed to A beta. Neurosci Lett 371:209–214

    Article  PubMed  CAS  Google Scholar 

  53. Zacco A, Togo J, Spence K, Ellis A, Lloyd D, Furlong S, Piser T (2003) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 23:11104–11111

    PubMed  CAS  Google Scholar 

  54. Bosel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hortnagl H, Fink KB, Endres M (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92:1386–1398

    Article  PubMed  CAS  Google Scholar 

  55. Lapchak PA, Han MK (2010) Simvastatin improves clinical scores in a rabbit multiple infarct ischemic stroke model: synergism with a ROCK inhibitor but not the thrombolytic tissue plasminogen activator. Brain Res 1344:217–225

    Article  PubMed  CAS  Google Scholar 

  56. Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci 29:13543–13556

    Article  PubMed  CAS  Google Scholar 

  57. Meske V, Albert F, Richter D, Schwarze J, Ohm TG (2003) Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer's disease. Eur J Neurosci 17:93–102

    Article  PubMed  CAS  Google Scholar 

  58. Ramirez C, Tercero I, Pineda A, Burgos JS (2011) Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J Alzheimers Dis 24:161–174

    PubMed  CAS  Google Scholar 

  59. Salins P, Shawesh S, He Y, Dibrov A, Kashour T, Arthur G, Amara F (2007) Lovastatin protects human neurons against Abeta-induced toxicity and causes activation of beta-catenin-TCF/LEF signaling. Neurosci Lett 412:211–216

    Article  PubMed  CAS  Google Scholar 

  60. Cespedes-Rubio A, Jurado FW, Cardona-Gomez GP (2010) p120 catenin/alphaN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. J Neurosci Res 88:3621–3634

    Article  PubMed  CAS  Google Scholar 

  61. Kretz A, Schmeer C, Tausch S, Isenmann S (2006) Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis 21:421–430

    Article  PubMed  CAS  Google Scholar 

  62. Xu R, Chen J, Cong X, Hu S, Chen X (2008) Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem 103:256–269

    Article  PubMed  CAS  Google Scholar 

  63. Rodriguez-Vita J, Sanchez-Galan E, Santamaria B, Sanchez-Lopez E, Rodrigues-Diez R, Blanco-Colio LM, Egido J, Ortiz A, Ruiz-Ortega M (2008) Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation. PLoS One 3:e3959

    Article  PubMed  CAS  Google Scholar 

  64. Balduini W, Mazzoni E, Carloni S, De Simoni MG, Perego C, Sironi L, Cimino M (2003) Prophylactic but not delayed administration of simvastatin protects against long-lasting cognitive and morphological consequences of neonatal hypoxic-ischemic brain injury, reduces interleukin-1beta and tumor necrosis factor-alpha mRNA induction, and does not affect endothelial nitric oxide synthase expression. Stroke 34:2007–2012

    Article  PubMed  CAS  Google Scholar 

  65. Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, Zhang C, Lu M, Katakowski M, Feldkamp CS, Chopp M (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53:743–751

    Article  PubMed  CAS  Google Scholar 

  66. Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    Article  PubMed  Google Scholar 

  67. Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, Mahmood A, Zhou D, Chopp M (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25:130–139

    Article  PubMed  Google Scholar 

  68. Pooler AM, Xi SC, Wurtman RJ (2006) The 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibitor pravastatin enhances neurite outgrowth in hippocampal neurons. J Neurochem 97:716–723

    Article  PubMed  CAS  Google Scholar 

  69. Kannan M, Steinert JR, Forsythe ID, Smith AG, Chernova T (2010) Mevastatin accelerates loss of synaptic proteins and neurite degeneration in aging cortical neurons in a heme-independent manner. Neurobiol Aging 31:1543–1553

    Article  PubMed  CAS  Google Scholar 

  70. Schulz JG, Bosel J, Stoeckel M, Megow D, Dirnagl U, Endres M (2004) HMG-CoA reductase inhibition causes neurite loss by interfering with geranylgeranylpyrophosphate synthesis. J Neurochem 89:24–32

    Article  PubMed  CAS  Google Scholar 

  71. Vural K, Tuglu MI (2011) Neurotoxic effect of statins on mouse neuroblastoma NB2a cell line. Eur Rev Med Pharmacol Sci 15:985–991

    PubMed  CAS  Google Scholar 

  72. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  PubMed  CAS  Google Scholar 

  73. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3- methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443

    Article  PubMed  CAS  Google Scholar 

  74. Simons M, Schwarzler F, Lutjohann D, von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz JB (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double- blind trial. Ann Neurol 52:346–350

    Article  PubMed  CAS  Google Scholar 

  75. Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, Wasser D, Johnson-Traver S, Lochhead J, Ziolwolski C (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 62:753–757

    Article  PubMed  Google Scholar 

  76. Collins R, Armitage J, Parish S, Sleight P, Peto R (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:7–22

    Article  Google Scholar 

  77. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360:1623–1630

    Article  PubMed  CAS  Google Scholar 

  78. Wagstaff LR, Mitton MW, Arvik BM, Doraiswamy PM (2003) Statin-associated memory loss: analysis of 60 case reports and review of the literature. Pharmacotherapy 23:871–880

    Article  PubMed  Google Scholar 

  79. Shepardson NE, Shankar GM, Selkoe DJ (2010) Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 68:1239–1244

    Article  Google Scholar 

  80. Douma TN, Borre Y, Hendriksen H, Olivier B, Oosting RS (2011) Simvastatin improves learning and memory in control but not in olfactory bulbectomized rats. Psychopharmacology (Berl) 216:537–544

    Article  CAS  Google Scholar 

  81. McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    Article  PubMed  CAS  Google Scholar 

  82. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  83. Clarke RM, O'Connell F, Lyons A, Lynch MA (2007) The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo. Neuropharmacology 52:136–145

    Article  PubMed  CAS  Google Scholar 

  84. Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW (2006) Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 103:3869–3874

    Article  PubMed  CAS  Google Scholar 

  85. Kotti T, Head DD, McKenna CE, Russell DW (2008) Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proc Natl Acad Sci USA 105:11394–11399

    Article  PubMed  CAS  Google Scholar 

  86. Mans RA, Chowdhury N, Cao D, McMahon LL, Li L (2010) Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience 166:435–444

    Article  PubMed  CAS  Google Scholar 

  87. Mans RA, McMahon LL, Li L (2011) Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience. doi:10.1016/j.neuroscience.2011.12.007

  88. Horwood JM, Dufour F, Laroche S, Davis S (2006) Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 23:3375–3384

    Article  PubMed  Google Scholar 

  89. Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15:1961–1967

    Article  PubMed  CAS  Google Scholar 

  90. Thornton C, Yaka R, Dinh S, Ron D (2003) H-Ras modulates N-methyl-D-aspartate receptor function via inhibition of Src tyrosine kinase activity. J Biol Chem 278:23823–23829

    Article  PubMed  CAS  Google Scholar 

  91. Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D (2002) NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci USA 99:5710–5715

    Article  PubMed  CAS  Google Scholar 

  92. Manabe T, Aiba A, Yamada A, Ichise T, Sakagami H, Kondo H, Katsuki M (2000) Regulation of long-term potentiation by H-Ras through NMDA receptor phosphorylation. J Neurosci 20:2504–2511

    PubMed  CAS  Google Scholar 

  93. Eckert GP, Hooff GP, Strandjord DM, Igbavboa U, Volmer DA, Muller WE, Wood WG (2009) Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis 35:251–257

    Article  PubMed  CAS  Google Scholar 

  94. Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903

    Article  CAS  Google Scholar 

  95. Fleisch H, Russell RG, Francis MD (1969) Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 165:1262–1264

    Article  PubMed  CAS  Google Scholar 

  96. Fleisch H, Russell RG, Simpson B, Muhlbauer RC (1969) Prevention by a diphosphonate of immobilization "osteoporosis" in rats. Nature 223:211–212

    Article  PubMed  CAS  Google Scholar 

  97. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  PubMed  CAS  Google Scholar 

  98. Rogers MJ, Crockett JC, Coxon FP, Monkkonen J (2011) Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49:34–41

    Article  PubMed  CAS  Google Scholar 

  99. Roelofs AJ, Thompson K, Ebetino FH, Rogers MJ, Coxon FP (2010) Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des 16:2950–2960

    Article  PubMed  CAS  Google Scholar 

  100. Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA (1999) Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA 96:133–138

    Article  PubMed  CAS  Google Scholar 

  101. Coxon FP, Helfrich MH, Van't Hof R, Sebti S, Ralston SH, Hamilton A, Rogers MJ (2000) Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 15:1467–1476

    Article  PubMed  CAS  Google Scholar 

  102. Clezardin P, Ebetino FH, Fournier PG (2005) Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res 65:4971–4974

    Article  PubMed  CAS  Google Scholar 

  103. Dechat T, Shimi T, Adam SA, Rusinol AE, Andres DA, Spielmann HP, Sinensky MS, Goldman RD (2007) Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci USA 104:4955–4960

    Article  PubMed  CAS  Google Scholar 

  104. Young SG, Meta M, Yang SH, Fong LG (2006) Prelamin A farnesylation and progeroid syndromes. J Biol Chem 281:39741–39745

    Article  PubMed  CAS  Google Scholar 

  105. Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, de Carlos F, Levy N, Freije JM, Lopez-Otin C (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14:767–772

    Article  PubMed  CAS  Google Scholar 

  106. Fawcett JR, Bordayo EZ, Jackson K, Liu H, Peterson J, Svitak A, Frey WH 2nd (2002) Inactivation of the human brain muscarinic acetylcholine receptor by oxidative damage catalyzed by a low molecular weight endogenous inhibitor from Alzheimer's brain is prevented by pyrophosphate analogs, bioflavonoids and other antioxidants. Brain Res 950:10–20

    Article  PubMed  CAS  Google Scholar 

  107. Cibickova L, Palicka V, Cibicek N, Cermakova E, Micuda S, Bartosova L, Jun D (2007) Differential effects of statins and alendronate on cholinesterases in serum and brain of rats. Physiol Res 56:765–770

    PubMed  CAS  Google Scholar 

  108. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U (2006) The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci USA 103:7829–7834

    Article  PubMed  CAS  Google Scholar 

  109. Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ (1998) Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res 13:1668–1678

    Article  PubMed  CAS  Google Scholar 

  110. Rondeau JM, Bitsch F, Bourgier E, Geiser M, Hemmig R, Kroemer M, Lehmann S, Ramage P, Rieffel S, Strauss A, Green JR, Jahnke W (2006) Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem 1:267–273

    Article  PubMed  CAS  Google Scholar 

  111. Jahnke W, Rondeau JM, Cotesta S, Marzinzik A, Pelle X, Geiser M, Strauss A, Gotte M, Bitsch F, Hemmig R, Henry C, Lehmann S, Glickman JF, Roddy TP, Stout SJ, Green JR (2010) Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nat Chem Biol 6:660–666

    Article  PubMed  CAS  Google Scholar 

  112. Leung KF, Baron R, Seabra MC (2006) Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res 47:467–475

    Article  PubMed  CAS  Google Scholar 

  113. Berndt N, Hamilton AD, Sebti SM (2011) Targeting protein prenylation for cancer therapy. Nat Rev Cancer 11:775–791

    Article  PubMed  CAS  Google Scholar 

  114. Tsimberidou AM, Chandhasin C, Kurzrock R (2010) Farnesyltransferase inhibitors: where are we now? Expert Opin Investig Drugs 19:1569–1580

    Article  PubMed  CAS  Google Scholar 

  115. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB (1993) Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260:1934–1937

    Article  PubMed  CAS  Google Scholar 

  116. Liu M, Sjogren AK, Karlsson C, Ibrahim MX, Andersson KM, Olofsson FJ, Wahlstrom AM, Dalin M, Yu H, Chen Z, Yang SH, Young SG, Bergo MO (2010) Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci USA 107:6471–6476

    Article  PubMed  CAS  Google Scholar 

  117. Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM (2001) The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 276:16161–16167

    Article  PubMed  CAS  Google Scholar 

  118. Crespo NC, Delarue F, Ohkanda J, Carrico D, Hamilton AD, Sebti SM (2002) The farnesyltransferase inhibitor, FTI-2153, inhibits bipolar spindle formation during mitosis independently of transformation and Ras and p53 mutation status. Cell Death Differ 9:702–709

    Article  PubMed  CAS  Google Scholar 

  119. Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE, Koester SK, Troyer DA, Bearss DJ, Conner MW, Gibbs JB, Hamilton K, Koblan KS, Mosser SD, O'Neill TJ, Schaber MD, Senderak ET, Windle JJ, Oliff A, Kohl NE (1998) A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 18:85–92

    PubMed  CAS  Google Scholar 

  120. Zhang B, Prendergast GC, Fenton RG (2002) Farnesyltransferase inhibitors reverse Ras-mediated inhibition of Fas gene expression. Cancer Res 62:450–458

    PubMed  CAS  Google Scholar 

  121. Reuveni H, Klein S, Levitzki A (2003) The inhibition of Ras farnesylation leads to an increase in p27Kip1 and G1 cell cycle arrest. Eur J Biochem 270:2759–2772

    Article  PubMed  CAS  Google Scholar 

  122. Cohen-Jonathan E, Evans SM, Koch CJ, Muschel RJ, McKenna WG, Wu J, Bernhard EJ (2001) The farnesyltransferase inhibitor L744,832 reduces hypoxia in tumors expressing activated H-ras. Cancer Res 61:2289–2293

    PubMed  CAS  Google Scholar 

  123. Kim CK, Choi YK, Lee H, Ha KS, Won MH, Kwon YG, Kim YM (2010) The farnesyltransferase inhibitor LB42708 suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signal pathways. Mol Pharmacol 78:142–150

    Article  PubMed  CAS  Google Scholar 

  124. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM (1997) Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283–1288

    Article  PubMed  CAS  Google Scholar 

  125. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM (1997) Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 272:14093–14097

    Article  PubMed  CAS  Google Scholar 

  126. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–14464

    Article  PubMed  CAS  Google Scholar 

  127. Mehta IS, Bridger JM, Kill IR (2010) Progeria, the nucleolus and farnesyltransferase inhibitors. Biochem Soc Trans 38:287–291

    Article  PubMed  CAS  Google Scholar 

  128. Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–1623

    Article  PubMed  CAS  Google Scholar 

  129. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121

    Article  PubMed  CAS  Google Scholar 

  130. Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL, Conneely KN, Qu X, San H, Ganesh SK, Chen X, Avallone H, Kolodgie FD, Virmani R, Nabel EG, Collins FS (2008) A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA 105:15902–15907

    Article  PubMed  CAS  Google Scholar 

  131. Kieran MW, Gordon L, Kleinman M (2007) New approaches to progeria. Pediatrics 120:834–841

    Article  PubMed  Google Scholar 

  132. Work LM, McPhaden AR, Pyne NJ, Pyne S, Wadsworth RM, Wainwright CL (2001) Short-term local delivery of an inhibitor of Ras farnesyltransferase prevents neointima formation in vivo after porcine coronary balloon angioplasty. Circulation 104:1538–1543

    Article  PubMed  CAS  Google Scholar 

  133. Eastman RT, Buckner FS, Yokoyama K, Gelb MH, Van Voorhis WC (2006) Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J Lipid Res 47:233–240

    Article  PubMed  CAS  Google Scholar 

  134. Carrico D, Ohkanda J, Kendrick H, Yokoyama K, Blaskovich MA, Bucher CJ, Buckner FS, Van Voorhis WC, Chakrabarti D, Croft SL, Gelb MH, Sebti SM, Hamilton AD (2004) In vitro and in vivo antimalarial activity of peptidomimetic protein farnesyltransferase inhibitors with improved membrane permeability. Bioorg Med Chem 12:6517–6526

    Article  PubMed  CAS  Google Scholar 

  135. Nallan L, Bauer KD, Bendale P, Rivas K, Yokoyama K, Horney CP, Pendyala PR, Floyd D, Lombardo LJ, Williams DK, Hamilton A, Sebti S, Windsor WT, Weber PC, Buckner FS, Chakrabarti D, Gelb MH, Van Voorhis WC (2005) Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J Med Chem 48:3704–3713

    Article  PubMed  CAS  Google Scholar 

  136. Bordier BB, Ohkanda J, Liu P, Lee SY, Salazar FH, Marion PL, Ohashi K, Meuse L, Kay MA, Casey JL, Sebti SM, Hamilton AD, Glenn JS (2003) In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus. J Clin Invest 112:407–414

    PubMed  CAS  Google Scholar 

  137. Ye X, Carew TJ (2010) Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 68:340–361

    Article  PubMed  CAS  Google Scholar 

  138. Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–530

    Article  PubMed  CAS  Google Scholar 

  139. Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y, Logan T, Lansbury PT Jr (2009) Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease. Proc Natl Acad Sci USA 106:4635–4640

    Article  PubMed  CAS  Google Scholar 

  140. O'Dwyer PJ, Gallagher M, Nguyen B, Waddell MJ, Chiorean EG (2010) Phase I accelerated dose-escalating safety and pharmacokinetic (PK) study of GGTI-2418, a novel geranylgeranyltransferase I inhibitor in patients with refractory solid tumors. Ann Oncol 21:ii42

    Article  Google Scholar 

  141. Finder JD, Litz JL, Blaskovich MA, McGuire TF, Qian Y, Hamilton AD, Davies P, Sebti SM (1997) Inhibition of protein geranylgeranylation causes a superinduction of nitric-oxide synthase-2 by interleukin-1beta in vascular smooth muscle cells. J Biol Chem 272:13484–13488

    Article  PubMed  CAS  Google Scholar 

  142. Zuckerbraun BS, Barbato JE, Hamilton A, Sebti S, Tzeng E (2005) Inhibition of geranylgeranyltransferase I decreases generation of vascular reactive oxygen species and increases vascular nitric oxide production. J Surg Res 124:256–263

    Article  PubMed  CAS  Google Scholar 

  143. Holmberg E, Nordstrom T, Gross M, Kluge B, Zhang SX, Doolen S (2006) Simvastatin promotes neurite outgrowth in the presence of inhibitory molecules found in central nervous system injury. J Neurotrauma 23:1366–1378

    Article  PubMed  Google Scholar 

  144. Reid TS, Terry KL, Casey PJ, Beese LS (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343:417–433

    Article  PubMed  CAS  Google Scholar 

  145. Govek EE, Hatten ME, Van Aelst L (2011) The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 71:528–553

    Article  PubMed  CAS  Google Scholar 

  146. Tolias KF, Duman JG, Um K (2011) Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 94:133–148

    Article  PubMed  CAS  Google Scholar 

  147. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64:58–74

    Article  PubMed  CAS  Google Scholar 

  148. Perez-Sala D (2007) Protein isoprenylation in biology and disease: general overview and perspectives from studies with genetically engineered animals. Front Biosci 12:4456–4472

    Article  PubMed  CAS  Google Scholar 

  149. Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F (2007) Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 3:e66

    Article  PubMed  CAS  Google Scholar 

  150. Chan LN, Hart C, Guo L, Nyberg T, Davies BS, Fong LG, Young SG, Agnew BJ, Tamanoi F (2009) A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis 30:3598–3606

    Article  PubMed  CAS  Google Scholar 

  151. DeGraw AJ, Palsuledesai C, Ochocki JD, Dozier JK, Lenevich S, Rashidian M, Distefano MD (2010) Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation. Chem Biol Drug Des 76:460–471

    Article  PubMed  CAS  Google Scholar 

  152. Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y (2004) A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA 101:12479–12484

    Article  PubMed  CAS  Google Scholar 

  153. Nguyen UT, Guo Z, Delon C, Wu Y, Deraeve C, Franzel B, Bon RS, Blankenfeldt W, Goody RS, Waldmann H, Wolters D, Alexandrov K (2009) Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol 5:227–235

    Article  PubMed  CAS  Google Scholar 

  154. Onono FO, Morgan MA, Spielmann HP, Andres DA, Subramanian T, Ganser A, Reuter CW (2010) A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting. Mol Cell Proteomics 9:742–751

    Article  PubMed  CAS  Google Scholar 

  155. Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296:235–242

    PubMed  CAS  Google Scholar 

  156. Leu CT, Luegmayr E, Freedman LP, Rodan GA, Reszka AA (2006) Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy. Bone 38:628–636

    Article  PubMed  CAS  Google Scholar 

  157. Cremers S, Papapoulos S (2011) Pharmacology of bisphosphonates. Bone 49:42–49

    Article  PubMed  CAS  Google Scholar 

  158. Essig M, Nguyen G, Prie D, Escoubet B, Sraer JD, Friedlander G (1998) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells. Role of geranylgeranylation and Rho proteins. Circ Res 83:683–690

    Article  PubMed  CAS  Google Scholar 

  159. Lin CH, Yeh SH, Lu KT, Leu TH, Chang WC, Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851

    Article  PubMed  CAS  Google Scholar 

  160. Magrane J, Rosen KM, Smith RC, Walsh K, Gouras GK, Querfurth HW (2005) Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci 25:10960–10969

    Article  PubMed  CAS  Google Scholar 

  161. O'Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, Kandel ER, Fishman MC (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 265:542–546

    Article  PubMed  Google Scholar 

  162. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491

    Article  PubMed  CAS  Google Scholar 

  163. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    Article  PubMed  CAS  Google Scholar 

  164. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (AG031846), the Alzheimer's Association (IIRG-09-131791, the American Health Assistance Foundation (A2010328), and the Academic Health Center of the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhang, W., Cheng, S. et al. Isoprenoids and Related Pharmacological Interventions: Potential Application in Alzheimer’s Disease. Mol Neurobiol 46, 64–77 (2012). https://doi.org/10.1007/s12035-012-8253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8253-1

Keywords

Navigation