Skip to main content
Log in

P2X7 Receptors in Oligodendrocytes: A Novel Target for Neuroprotection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intense ATP signaling through P2X7 purinergic receptors can lead to excitotoxicity, a feature which initiates neuronal demise in experimental paradigms relevant to ischemia and to traumatic injury. In addition, recent data provide evidence that oligodendrocytes also express P2X7 receptors that are activated under experimental pathological conditions involving white matter demise. Thus, this receptor subtype is a promising target for the development of new drugs to prevent white matter damage in acute and chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97:5621–5626

    Article  PubMed  CAS  Google Scholar 

  2. Matute C, Domercq M, Sánchez-Gómez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224

    Article  PubMed  Google Scholar 

  3. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477

    Article  PubMed  CAS  Google Scholar 

  4. Belachew S, Gallo V (2004) Synaptic and extrasynaptic neurotransmitter receptors in glial precursors’ quest for identity. Glia 48:185–196

    Article  PubMed  Google Scholar 

  5. Kettenmann H, Steinhauser C (2005) Receptors for neurotransmitters and hormones. In: Kettenmann H, Ransom BR (eds) Neuroglia. 2nd edn. Oxford University Press, USA, pp 131–145

    Google Scholar 

  6. Matute C (2006) Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends Mol Med 12:289–292

    Article  PubMed  CAS  Google Scholar 

  7. Matute C, Sánchez-Gómez MV, Martínez-Millán L, Miledi R (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A 94:8830–8835

    Article  PubMed  CAS  Google Scholar 

  8. McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  PubMed  CAS  Google Scholar 

  9. Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20:1190–1198

    PubMed  CAS  Google Scholar 

  10. Káradóttir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:1426–1438

    Article  PubMed  Google Scholar 

  11. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  12. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  13. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  14. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  15. Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    Article  PubMed  CAS  Google Scholar 

  16. North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485

    Article  PubMed  CAS  Google Scholar 

  17. Torres G, Egan T, Voigt M (1999) Hetero-oligomeric assembly of P2X receptor subunits: specificities exist with regard to possible partners. J Biol Chem 274:6653–6659

    Article  PubMed  CAS  Google Scholar 

  18. Khah BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  Google Scholar 

  19. Di Virgilio F, Sanz JM, Chiozzi P, Falzoni S (1999) The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor. Prog Brain Res 120:355–368

    Article  PubMed  Google Scholar 

  20. Di Virgilio F (2007) Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 28:465–472

    Article  PubMed  Google Scholar 

  21. Le Feuvre RA, Brough D, Touzani O, Rothwell NJ (2003) Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J. Cereb Blood Flow Metab 23:381–384

    Article  PubMed  Google Scholar 

  22. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827

    Article  PubMed  CAS  Google Scholar 

  23. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  PubMed  CAS  Google Scholar 

  24. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72(6):1402–1405

    Article  Google Scholar 

  25. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  PubMed  CAS  Google Scholar 

  26. Anderson CM, Nedergaard M (2006) Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 29:257–262

    Article  PubMed  CAS  Google Scholar 

  27. Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24:3413–3420

    Article  PubMed  CAS  Google Scholar 

  28. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152

    PubMed  CAS  Google Scholar 

  29. Sperlagh B, Köfalvi A, Deuchars J, Atkinson L, Milligan CJ, Buckley NJ, Vizi ES (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J. Neurochem 81:1196–1211

    Article  PubMed  CAS  Google Scholar 

  30. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    Article  PubMed  CAS  Google Scholar 

  31. Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335

    Article  PubMed  CAS  Google Scholar 

  32. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  33. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  34. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301

    Article  PubMed  CAS  Google Scholar 

  35. Witting A, Walter L, Wacker J, Möller T, Stella N (2004) P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc Natl Acad Sci U S A 101:3214–3219

    Article  PubMed  CAS  Google Scholar 

  36. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  37. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    Article  PubMed  CAS  Google Scholar 

  38. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132–144

    Article  PubMed  CAS  Google Scholar 

  39. Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, Umemura A, Mase M, Yamada K, Shimada S (2008) Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 1194:45–55

    Article  PubMed  CAS  Google Scholar 

  40. Matute C, Torre I, Pérez-Cerdá F, Perez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez M, Domercq M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    Article  PubMed  CAS  Google Scholar 

  41. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonté C, Aloisi F, Visentin S (2005) ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res Rev 48:157–165

    Article  PubMed  CAS  Google Scholar 

  42. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  PubMed  CAS  Google Scholar 

  43. Cavaliere F, Amadio S, Sancesario G, Bernardi G, Volonte C (2004) Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J Cereb Blood Flow 24:392–398

    Article  CAS  Google Scholar 

  44. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  PubMed  CAS  Google Scholar 

  45. Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  PubMed  Google Scholar 

  46. Chen L, Brosnan CF (2006) Exacerbation of experimental autoimmune encephalomyelitis in P2X7R−/−mice: evidence for loss of apoptotic activity in lymphocytes. J Immunol 176:3115–3126

    PubMed  CAS  Google Scholar 

  47. Witting A, Chen L, Cudaback E, Straiker A, Walter L, Rickman B, Möller T, Brosnan C, Stella N (2006) Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci U S A 103:6362–6367

    Article  PubMed  CAS  Google Scholar 

  48. Cabrini G, Falzoni S, Forchap SL, Pellegatti P, Balboni A, Agostini P, Cuneo A, Castoldi G, Baricordi OR, Di Virgilio F (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175:82–89

    PubMed  CAS  Google Scholar 

  49. Domercq M, Etxebarria E, Pérez-Samartín A, Matute C (2005) Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia 52:36–46

    Article  PubMed  Google Scholar 

  50. Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in my laboratory is supported by CIBERNED, Universidad del País Vasco, Gobierno Vasco, Ministerio de Educación y Ciencia y Ministerio de Sanidad y Consumo. Support by the European Leukodistrophy Association is also gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Matute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matute, C. P2X7 Receptors in Oligodendrocytes: A Novel Target for Neuroprotection. Mol Neurobiol 38, 123–128 (2008). https://doi.org/10.1007/s12035-008-8028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8028-x

Keywords

Navigation