Skip to main content

Advertisement

Log in

Improving hydrogen evolution activity of two-dimensional nanosheets MoNi4/MoO2.5-NF self-supporting electrocatalyst by electrochemical-cycling activation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alloys, especially Mo–Ni alloys, are excellent HER electrocatalysts in alkaline solution. The HER activity of the Mo–Ni alloys can be improved by grafting H2O dissociation promoters (metal oxides or hydroxides) to promote the dissociation of H2O in alkaline solution. However, most of the reported Mo–Ni alloys grafting with H2O dissociation promoters only have simple one-dimensional (1D) structures, which cannot further improve the catalytic performance. Compared with 1D nanomaterials, two-dimensional (2D) nanomaterials have higher specific surface area, electrical conductivity, more exposed active sites and mass transfer channels. Herein, a novel 2D nanosheets self-supporting composite electrocatalyst MoNi4/MoO2.5-NF derived from the NiMoO4 nanosheets was reported for the first time. Benefiting from the unique 2D nanosheets structure and the synergistic effect of each component, the catalyst shows high electrocatalytic HER activity in 1 M KOH solution. The MoNi4/MoO2.5-NF needs overpotential of 49 mV to reach 10 mA cm−2. The HER activity of MoNi4/MoO2.5-NF can be further improved through electrochemical-cycling activation (CV) process. After 10 CV cycles, the overpotential to reach 10 mA cm−2 of the catalyst decreased from 49 to 27 mV and even exceeded 20% Pt/C (32 mV). The improvement of HER performance is attributed to the increase in the electrochemically active surface area, the reduced impedance and Tafel slope after CV process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Merki D, Hu XL (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4(10):3878–3888

    Article  CAS  Google Scholar 

  2. Wang GN, Chen TT, Gómez-García-Garcia CJ, Zhang F, Zhang MY, Ma HY, Pang HJ, Wang XM, Tan LC (2020) A high-capacity negative electrode for asymmetric supercapacitors based on a PMo12 coordination polymer with novel water-assisted proton channels. J Power Sour 16(29):2001626

    CAS  Google Scholar 

  3. Ram S, Dusan T, Nenad M (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334(6060):1256–1260

    Article  Google Scholar 

  4. Li YG, Wang HL, Xie LM (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  Google Scholar 

  5. Wang MY, Wang Z, Gong XZ (2014) The intensification technologies to water electrolysis for hydrogen production: a review. Renew Sustain Energy Rev 29:573–588

    Article  CAS  Google Scholar 

  6. Fu L, Li Y, Yao N, Yang F, Cheng G, Luo W (2020) IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catalysis 10(13):7322–7327

    Article  CAS  Google Scholar 

  7. Khalid M, Honorato AMB, Tremiliosi FG, Varela H (2020) Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. J Mater Chem A 8(18):9021–9031

    Article  CAS  Google Scholar 

  8. Pan QQ, Xua CY, Lia X, Zhang JF, Hu XL, Geng Y, Su ZM (2020) Porous Ni-Mo bimetallic hybrid electrocatalyst by intermolecular forces in precursors for enhanced hydrogen generation. Chem Eng J 405:126962

    Article  Google Scholar 

  9. Nguyet NTP, Sung GK, Hyoung-Juhn K, Chanho P, Byungchan H, Seung GL (2021) Catalytic activity of Ni3Mo surfaces for hydrogen evolution reaction: a density functional theory approach. Appl Surf Sci 537:147894

    Article  Google Scholar 

  10. Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q (2014) Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed Engl 53(14):3675–3679

    Article  CAS  Google Scholar 

  11. Shanenkov I, Ivashutenko A, Shanenkova Y, Nikitin D, Zhu Y, Li J, Han W, Sivkov A (2020) Composite material WC1-x@C as a noble-metal-economic material for hydrogen evolution reaction. J Alloy Compd 834:155116

    Article  CAS  Google Scholar 

  12. Niu SS, Yang J, Qi HF, Su Y, Wang ZY, Qiu JS, Wang AQ, Zhang T (2020) Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction. J Energy Chem. https://doi.org/10.1016/j.jechem.2020.08.028

    Article  Google Scholar 

  13. Hyeong MJ, Youngkwon K, Duck HY (2021) One-pot synthesis of molybdenum carbide/N-doped carbon nanotube composite using nitrilotriacetic acid for efficient hydrogen evolution. J Alloy Compd 855:157420

    Article  Google Scholar 

  14. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem 126(21):5531–5534

    Article  Google Scholar 

  15. Zhang Z, Lu B, Hao J, Yang W, Tang J (2014) FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem Commun 50(78):11554–11557

    Article  CAS  Google Scholar 

  16. Yang BB, Xu JY, Bin D, Wang J, Zhao JZ, Liu YX, Li BX, Fang XN, Liu Y, Qiao L, Liu LF, Liu BH (2020) Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Appl Catal B 283:119583

    Article  Google Scholar 

  17. Lin Y, Zhang ML, Zhao LX, Wang LM, Cao DM, Gong YQ (2021) Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl Surf Sci 536:147952

    Article  CAS  Google Scholar 

  18. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5(12):4615–4620

    Article  CAS  Google Scholar 

  19. Shi J, Pu Z, Liu Q, Asiri AM, Hu J, Sun X (2015) Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim Acta 154:345–351

    Article  CAS  Google Scholar 

  20. Kartick CM, Mahendra Y (2021) Palladium oxide decorated transition metal nitride as efficient electrocatalyst for hydrogen evolution reaction. J Alloy Compd 855:157511

    Article  Google Scholar 

  21. Jiang HQ, Li XS, Zang SY, Zhang WL (2021) Mixed cobalt-nitrides CoxN and Ta2N bifunction-modified Ta3N5 nanosheets for enhanced photocatalytic water-splitting into hydrogen. J Alloy Compd 854:155328

    Article  CAS  Google Scholar 

  22. Peng S, Li L, Han X, Sun M, Srinivasan M, Mhaisalkar SG, Cheng F, Yan Q, Chen J, Ramakrishna S (2014) Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem 126(46):12802–12807

    Article  Google Scholar 

  23. Hou Y, Pang HJ, Zhang L, Li BN, Xin JJ, Li KQ, Ma HY, Wang XM, Tan LC (2020) Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. J Power Sour 446:227319

    Article  CAS  Google Scholar 

  24. Kadrekarac R, Patelb N, Aryaa A (2020) Understanding the role of boron and stoichiometric ratio in the catalytic performance of amorphous Co-B catalyst. Appl Surf Sci 518:146199

    Article  Google Scholar 

  25. Hong WZ, Sun SF, Kong Y, Hu YY, Chen G (2020) NixFe1−xB nanoparticle self-modified nanosheets as efficient bifunctional electrocatalysts for water splitting: experiments and theories. J Mater Chem A 8(15):7360–7367

    Article  CAS  Google Scholar 

  26. Li YJ, Huang BL, Sun YJ, Luo MC, Yang Y, Qin YN, Wang L, Li CJ, Lv F, Zhang WY, Guo SJ (2018) Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 15(1):1804212

    Article  Google Scholar 

  27. Hyounmyung P, Eunsoo L, Lei M, Hyunkeun J, Sinisa C, Boniface PTF (2020) Canonic-like HER activity of Cr1–xMoxB2 solid solution: overpowering Pt/C at high current density. Adv Mater 32(28):2000855

    Article  Google Scholar 

  28. An L, Zang X, Ma L, Guo J, Liu Q, Zhang X (2020) Graphene layer encapsulated MoNi4-NiMoO4 for electrocatalytic water splitting. Appl Surf Sci 504:144390

    Article  CAS  Google Scholar 

  29. Cao GX, Chen ZJ, Yin H, Gan LY, Zang MJ, Xu N, Wang P (2019) Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 7(17):10338–10345

    Article  CAS  Google Scholar 

  30. Xu K, Cheng H, Lv HF, Wang JY, Liu LQ, Liu S, Wu XJ, Chu WS, Wu CZ, Xie Y (2018) Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv Mater 30(1):1703322

    Article  Google Scholar 

  31. Zhang L, Amiinu IS, Ren X, Liu Z, Du G, Abdullah MA, Zheng BZ, Sun XP (2017) Surface modification of a NiS2 nanoarray with Ni(OH)2 toward superior water reduction electrocatalysis in alkaline media. Inorg Chem 56(22):13651–13654

    Article  CAS  Google Scholar 

  32. Zhang J, Wang T, Liu P, Liao ZY, Liu SH, Zhuang XD, Chen MW, Ehrenfried Z, Feng XL (2017) Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun 8:15437

    Article  CAS  Google Scholar 

  33. Chen YY, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai ZH, Wan LJ, Hu JS (2017) Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv Mater 29(39):1703311

    Article  Google Scholar 

  34. Meng LS, Li LP, Wang JH, Fu SX, Zhang YL, Li J, Xue CL, Wei YH, Li GS (2020) Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction. Electrochim Acta 350:136382

    Article  CAS  Google Scholar 

  35. Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Gwang-Hyeon N, Melinda S, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    Article  CAS  Google Scholar 

  36. Yang C, Gao MY, Zhang QB, Zeng JR, Li XT, Abbott AP (2017) In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano energy 36:85–94

    Article  CAS  Google Scholar 

  37. Jin W, Chen JP (2018) Electrochemically activated Cu2O/Co3O4 nanocomposites on defective carbon nanotubes for the hydrogen evolution reaction. New J Chem 42(24):19400–19406

    Article  CAS  Google Scholar 

  38. Kim YM, Jackson DHK, Lee D, Choi M, Kim TW, Jeong SY, Chae HJ, Kim HW, Park NJ, Chang HJ, Kuech TF, Kim HJ (2017) In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv Funct Mater 27(34):1701825

    Article  Google Scholar 

  39. Jin QY, Ren BW, Li DQ, Cui H, Wang CX (2018) In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano energy 49:14–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (No. 51801070, 51808253), Natural Science Foundation of Jilin Province (No. 20200201051JC) and 13nd 5-year Science and Technology Research Program of the Department of Education of Jilin Province (No. JJKH20190858KJ). The project is supported financially by the Opening Project of Key Laboratory of Polyoxometalate Science of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Yan, Alateng Shaga or Zhongmou Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Gu, Y., Shaga, A. et al. Improving hydrogen evolution activity of two-dimensional nanosheets MoNi4/MoO2.5-NF self-supporting electrocatalyst by electrochemical-cycling activation. J Mater Sci 56, 6945–6954 (2021). https://doi.org/10.1007/s10853-020-05698-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05698-w

Navigation