Skip to main content

Advertisement

Log in

Effect of annealing temperature on the structural, dielectric and electric properties of \(\hbox {Ni}_{{0.7}} \hbox {Cd}_{0.3}\hbox {Fe}_{2}\hbox {O}_{4}\) ferrites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A composition of Ni\(_{{0.7}}\hbox {Cd}_{{0.3}}\hbox {Fe}_{{2}}\hbox {O}_{{4}}\) (NCF) ferrite nanoparticles was synthesized by a sol–gel auto-combustion technique. The particles in powder form were annealed at 550 and 700\(^{\circ }\hbox {C}\) to study the structural, dielectric and electric properties of NCF by using X-ray diffraction (XRD), field emission scanning electron microscopy, impedance and modulus spectroscopy. XRD patterns confirmed the single phase cubic spinel structure of the sample. The average crystallite size of NCF was found to be 17 nm at 550\(^{\circ }\hbox {C}\) and 31 nm at 700\(^{\circ }\hbox {C}\), respectively. The variation in complex dielectric constant, loss tangent and impedance along with the modulus properties of NCF with frequencies was observed at room temperature because of their size and annealing temperature. Notably, dielectric dispersion of the materials was observed at low frequencies because of Maxwell–Wagner interfacial polarization. The impedance and modulus spectroscopy were used to investigate the electric properties of the materials, which revealed the increase in grain and grain boundary resistance with annealing temperature. A non-Debye type of relaxation in the materials was evidenced through the Cole–Cole study of impedance and modulus spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smit J and Wijn H P 1959 Ferrites (Eindhoven, The Netherlands: Philips Technical Library) p 278

  2. Angelakeris M, Li Z A, Hilgendorff M, Simeonidis K, Sakellari D, Filippousi M et al 2015 J. Magn. Magn. Mater.381 179

    Article  CAS  Google Scholar 

  3. Salas G, Veintemillas-Verdaguer S and Morales M D 2013 Int. J. Hyperthermia29 768

    Article  Google Scholar 

  4. Grüttner C, Müller K, Teller J and Westphal F 2013 Int. J. Hyperthermia29 777

    Article  Google Scholar 

  5. Pankhurst Q A, Connolly J, Jones S K and Dobson J 2003 J. Phys. D36 R167

    Article  CAS  Google Scholar 

  6. Yoo D, Lee J H, Shin T H and Cheon J 2011 Acc. Chem. Res.44 863

    Article  CAS  Google Scholar 

  7. Kozissnik B, Bohorquez A C, Dobson J and Rinaldi C 2013 Int. J. Hyperthermia29 706

    Article  Google Scholar 

  8. Gul I H and Pervaiz E 2012 Mater. Res. Bull.47 1353

    Article  CAS  Google Scholar 

  9. Koops C G 1951 Phys. Rev.83 121

    Article  CAS  Google Scholar 

  10. Lakhani V K, Zhao B, Wang L, Trivedi U N and Modi K B 2011 J. Alloys Compd.509 4861

    Article  CAS  Google Scholar 

  11. Afifi M A, El-Wahabb E A, Bekheet A E and Atyia H E 2000 Acta Phys. Pol. A98 401

    Article  CAS  Google Scholar 

  12. Mozaffari M, Arani M E and Amighian J 2010 J. Magn. Magn. Mater.322 3240

    Article  CAS  Google Scholar 

  13. Shirsath S E, Toksha B G, Kadam R H, Patange S M, Mane D R, Jangam G S et al 2010 J. Phys. Chem. Solids71 1669

    Article  CAS  Google Scholar 

  14. Kim Y I, Kim D and Lee C S 2003 Physica B337 42

    Article  CAS  Google Scholar 

  15. Hossen M B and Hossain A A 2015 J. Magn. Magn. Mater.387 24

    Article  CAS  Google Scholar 

  16. Li F, Liu J, Evans D G and Duan X 2004 Chem. Mater.16 1597

    Article  CAS  Google Scholar 

  17. Hu P, Yang H B, Pan D A, Wang H, Tian J J, Zhang S G et al 2010 J. Magn. Magn. Mater.322 173

    Article  CAS  Google Scholar 

  18. Belavi P B, Chavan G N, Bammannavar B K, Naik L R and Kotnala R K 2011 AIP Conference Proceedings1349 1249

  19. Nath S K, Maria K H, Noor S, Sikder S S, Hoque S M, Hakim M A et al 2012 J. Magn. Magn. Mater.324 2116

    Article  CAS  Google Scholar 

  20. Batoo K M, Kumar S and Lee C G 2009 Curr. Appl. Phys.9 826

    Article  Google Scholar 

  21. Kumar E R, Kamzin A S and Prakash T 2015 J. Magn. Magn. Mater.378 389

    Article  CAS  Google Scholar 

  22. Scherrer P 1918 Zsigmondy’s KolloidchemieNachrichten von der Göttinger Gesellschaft394 1920

    Google Scholar 

  23. Nelson J B and Riley D P 1945 Proc. Phys. Soc.57 160

    Article  CAS  Google Scholar 

  24. Mendelson M I 1969 J. Am. Ceram. Soc.52 443

    Article  CAS  Google Scholar 

  25. Arifuzzaman M and Hossen M B 2020 Results Phys.16 102824

    Article  Google Scholar 

  26. Valenzuela R 1980 J. Mater. Sci. 1980 15 3173

    Article  Google Scholar 

  27. Wagner K W 1913 Ann. Phys.345 817

    Article  Google Scholar 

  28. Dhanaraj P V and Rajesh N P 2011 Physica B406 12

    Article  CAS  Google Scholar 

  29. Mu G, Chen N, Pan X, Shen H and Gu M 2008 Mater. Lett.62 840

    Article  CAS  Google Scholar 

  30. Ahmed T T, Rahman I Z and Rahman M A 2004 J. Mater. Process. Technol.153 797

    Article  Google Scholar 

  31. Kharabe R G, Devan R S, Kanamadi C M and Chougule B K 2006 Smart Mater. Struct.15 N36

    Article  CAS  Google Scholar 

  32. Ali I, Islam M U, Ashiq M N, Shakir I, Karamat N, Ishaque M et al 2015 Ceram. Int.41 8748

    Article  CAS  Google Scholar 

  33. Rahaman M D, Nahar K K, Khan M N and Hossain A A 2016 Physica B481 156

    Article  CAS  Google Scholar 

  34. Shukla A and Choudhary R N 2011 Curr. Appl. Phys.11 41

    Article  Google Scholar 

Download references

Acknowledgements

The present study was funded by CHSR, Chittagong University of Engineering and Technology (CUET), Chittagong-4349, Bangladesh. Md. Arifuzzaman is grateful to the Centre of Excellence in Nanomaterials, Department of Physics, CUET, Chittagong, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Arifuzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifuzzaman, M., Hossen, M.B., Rashid, M.H. et al. Effect of annealing temperature on the structural, dielectric and electric properties of \(\hbox {Ni}_{{0.7}} \hbox {Cd}_{0.3}\hbox {Fe}_{2}\hbox {O}_{4}\) ferrites. Bull Mater Sci 43, 155 (2020). https://doi.org/10.1007/s12034-020-02116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02116-4

Keywords

Navigation