Skip to main content
Log in

Electromagnetic simulations of polarization-insensitive and wide-angle multiband metamaterial absorber by incorporating double asterisk resonator

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A novel multiband metamaterial absorber (MTMA) is proposed which is capable of well presenting a polarization-insensitive and wide incident angle stability in the microwave frequency range. The proposed MTMA comprising two vertically stacked asterisk-based copper resonators separated by dielectric layer of flame retardant type four and backed with a thin copper film. High-frequency structure simulator was used to simulate the absorber and to depict surface current distribution. The results showed that the absorber is operated at three narrow bands with high absorptivity of about 92, 100 and 100% at frequencies of 2.75, 4.3 and 9.5 GHz, respectively. The position of the resonant peaks can be effectively tuned by adjusting the geometry parameters of the structure, thereby achieving a multiband, polarization-independent and wide-angle absorber. The designed structure is important for the application of sensors, thermal images and in constructing broad multiband signals for electromagnetic compatibility/interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402

    Article  CAS  Google Scholar 

  2. Ünal E, Bakır M, Karaaslan M, Akgol O and Sabah C 2018 Int. J. Mod. Phys. B32 1850275

    Article  Google Scholar 

  3. Ozkan V, Yapici A, Karaaslan M and Akgol O 2019 Fresenius Environ. Bull. 28 2238

    CAS  Google Scholar 

  4. Flamant Q, Torrent D, Gomez-Graña S, Grigorenko A N, Kravets V G, Barois P et al 2019 Opt. Soc. Am. 2 1762

    CAS  Google Scholar 

  5. Yamamoto S, Aikawa S, Morimoto M, Hatakeyama K and Tsutaoka T 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP) p 2381

  6. Ozturk M, Sevim U K, Akgol O, Unal E and Karaaslan M 2018 Appl. Comput. Electromagn. Soc. J. 33 3

    Google Scholar 

  7. Duck-Hyun Lee K L, Sungjoon L and Chang-Wook B 2015 Microelectron. Eng. 136 42

    Article  Google Scholar 

  8. Bakır M, Karaaslan M, Karadag F, Dalgac S, Ünal E and Akgöl O 2019 Appl. Comput. Electromagn. Soc. J. 34 799

    Google Scholar 

  9. Bakır M, Dalgaç Ş, Ünal E, Karadağ F, Demirci M, Köksal A S et al 2019 Water, Air, Soil Pollut. 230 304

    Article  Google Scholar 

  10. Gasimov N, Karaaslan M, Sabah C and Karadag F 2019 EPJ Appl. Metamat. 6 16

    Article  Google Scholar 

  11. Hu D, Wang H Y, Zhu Q F, Zhang X W and Tang Z 2016 J. Nonlinear Opt. Phys. 25 1650032

    Article  CAS  Google Scholar 

  12. Li T H, Huang M, Yang J J, Lu J and Cao H L 2013 Int. J. Mod. Phys. B27 1350148

    Article  Google Scholar 

  13. Haxha S, AbdelMalek F, Ouerghi F, Charlton M D B, Aggoun A and Fang X 2018 Sci. Rep. 8 16119

    Article  CAS  Google Scholar 

  14. Tümkaya M A, Karaaslan M and Sabah C 2018 Bull. Mater. Sci. 41 91

    Article  Google Scholar 

  15. Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakır M and Sabah C 2019 Int. J. Mod. Phys. 33 1950056

    Article  Google Scholar 

  16. Kowerdziej R and Jaroszewicz L 2019 Liq. Cryst. 2019 1618935

    Google Scholar 

  17. Cao H, Shan M, Chen T, Lei J, Yang L and Tan X 2019 PIER77 93

    Article  CAS  Google Scholar 

  18. Alkurt F O and Karaaslan M 2019 Opt. Quant. Electron. 51 279

    Article  Google Scholar 

  19. Gao R, Xu Z, Ding C, Wu L and Yao J 2015 Opt. Commun. 356 400

    Article  CAS  Google Scholar 

  20. Feng R, Qiu J, Cao Y, Liu L, Ding W and Chen L 2014 Appl. Phys. Lett. 105 181102

    Article  Google Scholar 

  21. Wu J, Zhou C, Yu J, Cao H, Li S and Jia W 2014 IEEE Photonic Tech. L. 26 949

    Article  CAS  Google Scholar 

  22. Li L, Yang Y and Liang C 2011 J. Appl. Phys. 110 063702

    Article  Google Scholar 

  23. Mao Q, Feng C and Yang Y 2019 Plasmonics14 389

    Article  CAS  Google Scholar 

  24. Li S, Ai X, Wu R, Chen J and Jiang T 2019 Opt. Laser Technol. 115 239

    Article  CAS  Google Scholar 

  25. Liu Y, Zhong R, Huang J, Lv Y, Han C and Liu S 2019 Opt. Express 27 7393

    Article  CAS  Google Scholar 

  26. Hu F, Wang L, Quan B, Xu X, Li Z, Wu Z et al 2013 J. Phys. D: Appl. Phys. 46 195103

    Google Scholar 

  27. Li W, Zhou X, Ying Y, Qiao X, Qin F, Li Q et al 2015 AIP Adv. 5 067151

    Article  Google Scholar 

  28. Smith D R and Koschny T 2005 Phys. Rev. E71 036617

    Article  CAS  Google Scholar 

  29. Ye Y Q, Jin Y and He S 2010 J. Opt. Soc. Am. B27 498

    Article  CAS  Google Scholar 

  30. Azada A K, Taylor A J, Smirnova E and O’Hara J F 2008 Appl. Phys. Lett. 92 011119

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 51802352) and Central South University under Grant No. 2018zzts355.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muharrem Karaaslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkarim, Y.I., Deng, L., Luo, H. et al. Electromagnetic simulations of polarization-insensitive and wide-angle multiband metamaterial absorber by incorporating double asterisk resonator. Bull Mater Sci 43, 116 (2020). https://doi.org/10.1007/s12034-020-02098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02098-3

Keywords

Navigation