Skip to main content
Log in

Enhancement of impact strength of poly(lactic acid)/silicon carbide nanocomposites through surface modification with titanate-coupling agents

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, poly(lactic acid) (PLA)-based nanocomposites were fabricated from PLA and silicon carbide (SiC) using solution blending. The surfaces of SiC nanoparticles were treated with a titanate-coupling agent. The influence of the SiC content on thermal stability, flexural properties, impact strength and fracture morphology of the nanocomposites was investigated. The impact strength of the nanocomposites was increased by the introduction of SiC nanoparticles. The nanocomposites containing SiC nanoparticles treated with a titanate-coupling agent (termed T-SiC) exhibited higher impact strengths than the nanocomposites containing neat SiC nanoparticles under the same conditions. Scanning electron microscopy results showed good compatibility between the T-SiC nanoparticles and the PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bedő D, Imre B, Domján A, Schön P, Vancso G J and Pukánszky B 2017 Eur. Polym. J. 97 409

    Google Scholar 

  2. Jin F L, Hu R R and Park S J 2019 Composites, Part B 164 287

    CAS  Google Scholar 

  3. Vasile C, Râpă M, Ştefan M, Stan M, Macavei S, Darie-Niţă R N et al 2017 eXPRESS Polym. Lett. 11 531

    CAS  Google Scholar 

  4. Lashgari S, Karrabi M, Ghasemi I, Azizi H, Messori M and Paderni K 2016 eXPRESS Polym. Lett. 10 349

    CAS  Google Scholar 

  5. Scaffaro R, Sutera F, Mistretta M C, Botta L and Mantia F P L 2017 eXPRESS Polym. Lett. 11 555

    CAS  Google Scholar 

  6. Beltran F R, Lorenzo V, Acosta J, Orden M U and Urreaga J M 2018 J. Environ. Manage. 216 25

    CAS  Google Scholar 

  7. Bayati S and Tavanaie M A 2018 J. Clean. Prod. 176 382

    CAS  Google Scholar 

  8. Gupta A, Mulchandani N, Shah M, Kumar S and Katiyar V 2018 Polymer 142 196

    CAS  Google Scholar 

  9. Orue A, Eceiza A and Arbelaiz A 2018 Ind. Crops Prod. 118 321

    CAS  Google Scholar 

  10. Montes S, Etxeberria A, Mocholi V, Rekondo A, Grande H and Labidi J 2018 eXPRESS Polym. Lett. 12 543

    CAS  Google Scholar 

  11. Carbonell-Verdu A, Ferri J M, Dominici F, Boronat T, Sanchez-Nacher L, Balart R et al 2018 eXPRESS Polym. Lett. 12 808

    CAS  Google Scholar 

  12. Bergel B F, Luz L M and Santana R M C 2018 Prog. Org. Coat. 118 91

    CAS  Google Scholar 

  13. Liu Z, Hu D, Huang L, Li W, Tian J, Lu L et al 2018 Chem. Eng. J. 346 649

    CAS  Google Scholar 

  14. Carbonell-Verdu A, Samper M D, Garcia-Garcia D, Sanchez-Nacher L and Balart R 2017 Ind. Crops Prod. 104 278

    CAS  Google Scholar 

  15. Porfyris A, Vasilakos S, Zotiadis C, Papaspyrides C, Moser K, Schueren L V et al 2018 Polym. Test. 68 315

    CAS  Google Scholar 

  16. Vahabi H, Shabanian M, Aryanasab F, Mangin R, Laoutid F and Saeb M R 2018 Thermochim. Acta 666 51

    CAS  Google Scholar 

  17. Fehri M K, Mugoni C, Cinelli P, Anguillesi I, Coltelli M B, Fiori S et al 2016 eXPRESS Polym. Lett. 10 274

    CAS  Google Scholar 

  18. García D E, Carrasco J C, Salazar J P, Pérez M A, Cancino R A and Riquelme S 2016 eXPRESS Polym. Lett. 10 835

    Google Scholar 

  19. Liu W, Qiu J, Zhu L, Fei M, Qiu R, Sakai E et al 2018 Polymer 148 109

    CAS  Google Scholar 

  20. Si W J, Yuan W Q, Li Y D, Chen Y K and Zeng J B 2018 Polym. Test. 65 249

    CAS  Google Scholar 

  21. Coiai S, Javarone S, Cicogna F, Oberhauser W, Onor M, Pucci A et al 2018 Eur. Polym. J. 99 189

    CAS  Google Scholar 

  22. Iñiguez-Franco F, Auras R, Rubino M, Dolan K, Soto-Valdez H and Selke S 2017 Polym. Degrad. Stab. 146 287

    Google Scholar 

  23. Wu H, Nagarajan S, Shu J, Zhang T, Zhou L, Duan Y et al 2018 Carbohydr. Polym. 197 204

    CAS  Google Scholar 

  24. Liu C, Ye S and Feng J 2017 Compos. Sci. Technol. 144 215

    CAS  Google Scholar 

  25. Roberto A, Rachele C, Maurizio A, Mariacristina C, Gennaro G, Stefano F et al 2018 Composites, Part B 152 267

    Google Scholar 

  26. Zhang X, Geng B, Chen H, Chen Y, Wang Y, Zhang L et al 2018 Chem. Eng. J. 334 2014

    CAS  Google Scholar 

  27. Jin F L, Zhang H, Yao S S and Park S J 2018 Macromol. Res. 26 211

    CAS  Google Scholar 

  28. Zhong Y, Lia T, Lin H, Zhang L, Xiong Z, Fang Q et al 2018 Chem. Eng. J. 344 299

    CAS  Google Scholar 

  29. Kang M J, Jin F L and Park S J 2018 Macromol. Res. 26 1048

    CAS  Google Scholar 

  30. Qi Y, Luo Q, Shen J, Zheng L, Zhou J and Chen W 2017 Appl. Surf. Sci. 414 147

    CAS  Google Scholar 

  31. Hwang Y, Kim M and Kim J 2014 Chem. Eng. J. 246 229

    CAS  Google Scholar 

  32. Jin F L, Liu H C, Yang B and Park S J 2015 J. Ind. Eng. Chem. 24 20

    CAS  Google Scholar 

  33. Park S J, Heo G Y and Jin F L 2015 Macromol. Res. 23 156

    CAS  Google Scholar 

  34. Zhou Q and Xanthos M 2009 Polym. Degrad. Stab. 94 327

    CAS  Google Scholar 

  35. Najafi N, Heuzey M C, Carreau P J and Wood-Adams P M 2012 Polym. Degrad. Stab. 97 554

    CAS  Google Scholar 

  36. Zhou Y, Lei L, Yang B, Li J and Ren J 2018 Polym. Test. 68 34

    CAS  Google Scholar 

  37. Pantani R, Gorrasi G, Vigliotta G, Murariu M and Dubois P 2013 Eur. Polym. J. 49 3471

    CAS  Google Scholar 

  38. Vasile C, Stoleru E, Darie-Niţa R N, Dumitriu R P, Pamfil D and Tarţau L 2019 Polymers (Basel) 11 941

    CAS  Google Scholar 

  39. Yao S S, Pang Q Q, Song R, Jin F L and Park S J 2016 Macromol. Res. 24 961

    CAS  Google Scholar 

  40. Lopera-Valle A, Caputo J V, Leão R, Sauvageau D, Luz S M and Elias A 2019 Polymers (Basel) 11 933

    Google Scholar 

  41. Jin F L, Pang Q Q, Zhang T Y and Park S J 2015 J. Ind. Eng. Chem. 32 77

    CAS  Google Scholar 

  42. Pinto V C, Ramos T, Alves A S F, Xavier J, Tavares P J, Moreira P M G P et al 2017 Eng. Failure Anal. 71 63

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Traditional Culture Convergence Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2018M3C1B5052283) and Technological Innovation R&D Program (S2463211) funded by the Small and Medium Business Administration (SMBA, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JB., Zhang, H., Jin, FL. et al. Enhancement of impact strength of poly(lactic acid)/silicon carbide nanocomposites through surface modification with titanate-coupling agents. Bull Mater Sci 43, 6 (2020). https://doi.org/10.1007/s12034-019-1977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1977-z

Keywords

Navigation