Skip to main content

Advertisement

Log in

Synthesis and characterization of porous cytocompatible scaffolds from polyvinyl alcohol–chitosan

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, novel porous cytocompatible scaffolds with a 3D nanocomposite structure were synthesized by using nanoclay particles embedded into a biopolymer blend composed of polyvinyl alcohol (PVA) and chitosan (CS). According to the results, the Fourier transform infrared spectrum confirmed the presence of nanoclay, PVA and CS in the scaffold structure. X-ray diffraction outcomes showed the enhancement of crystalline zone in the synthesized 3D scaffolds by increasing the nanoclay content. Scanning electron microscopy (SEM) images revealed the highly porous interconnected microstructure of the scaffolds. Also, the energy-dispersive X-ray spectra verified the presence of nanoclay, PVA and CS in the sample with the highest nanoclay content. According to mechanical properties and porosity of the synthesized 3D scaffolds, compressive strength (i.e., \(3.5\pm 0.2\) MPa), elastic modulus (\(1.42\pm 0.02\) GPa) and porosity (75–82%) of the sample with the highest nanoclay content was in the range of mechanical properties and porosity of a natural trabecular bone tissue. The swelling of samples in a phosphate-buffered saline solution was less than the swelling in water. In addition, increasing the content of nanoclay decreases the percentage of swelling. Outcomes of cell culture experiments confirmed that the synthesized 3D scaffolds were not toxic and the cell attachment SEM images showed a sufficient attachment of the cell to the interconnected porous structure of the sample. Results suggest that the synthesized 3D scaffold in this study possesses proper microstructure properties and no cytotoxicity to be replaced with natural bone tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braddock M, Houston P, Campbell C and Ashcroft P 2001 Am. Physiol. Soc. 16 28

    Google Scholar 

  2. Tsai S T, Hsu F Y and Chen P L 2008 Acta Biomater. 4 1332

    Article  CAS  Google Scholar 

  3. Uemura T, Dong J, Wang Y, Kojima H, Saito T, Iejima D et al 2003 Biomaterials 24 2277

    Article  CAS  Google Scholar 

  4. Meyer U, Joos U and Wiesmann H P 2004 Int. J. Oral Maxillofac. Surg. 33 635

    Article  CAS  Google Scholar 

  5. Freyman T, Yannas I and Gibson L 2001 Prog. Mater. Sci. 46 273

    Article  CAS  Google Scholar 

  6. Zhou X H, Wei D X, Ye H M, Zhang X, Meng X and Zhou Q 2016 Mater. Sci. Eng. C 67 326

    Article  CAS  Google Scholar 

  7. Fereshteh Z, Fathi M, Bagri A and Boccaccini A R 2016 Mater. Sci. Eng. C 68 613

    Article  CAS  Google Scholar 

  8. Zhao W, Li J, Jin K, Liu W, Qiu X and Li C 2016 Mater. Sci. Eng. C 59 1181

    Article  CAS  Google Scholar 

  9. Saravanan S, Sameera D K, Moorthi A and Selvamurugan N 2013 Int. J. Biol. Macromol. 62 431

    Article  Google Scholar 

  10. de Araújo Júnior A M, Braido G, Saska S, Barud H S, Franchi L P, Assunção M N et al 2016 Carbohydr. Polym. 136 892

    Article  Google Scholar 

  11. Kruppke B, Farack J, Wagner A S, Beckmann S, Heinemann C, Glenske K et al 2016 Acta Biomater. 32 275

    Article  CAS  Google Scholar 

  12. Pon-On W, Suntornsaratoon P, Charoenphandhu N, Thongbunchoo J, Krishnamra N and Tang I M 2016 Mater. Sci. Eng. C 62 183

    Article  CAS  Google Scholar 

  13. Beladi F, Saber-Samandari S and Saber-Samandari S 2017 Mater. Sci. Eng. C 75 385

    Article  CAS  Google Scholar 

  14. Langer R and Vacanti J P 1993 Sciene 260 92

    Article  Google Scholar 

  15. Ma P X, Zhang R, Xiao G and Franceschi R 2001 J. Biomed. Mater. Res. 54 284

    Article  CAS  Google Scholar 

  16. Peter M, Binulal N S, Nair S V, Selvamurugan N, Tamura H and Jayakumar R 2010 Chem. Eng. J. 158 353

    Article  CAS  Google Scholar 

  17. Cerchiara T, Luppi B and Bigucci F 2003 Eur. J. Pharm. Biopharm. 56 401

    Article  CAS  Google Scholar 

  18. Hassan C M and Ward J H 2000 Polymer 41 6729

    Article  CAS  Google Scholar 

  19. Hassan C M and Peppas N A 2000 Macromolecules 33 2472

    Article  CAS  Google Scholar 

  20. Sin L T, Rahman W A, Rahmat A R and Mokhtar M 2011 Carbohydr. Polym. 83 303

    Article  CAS  Google Scholar 

  21. Kim S J, Lee C K and Lee Y M 2003 React. Funct. Polym. 55 291

    Article  CAS  Google Scholar 

  22. Părpăriţăa E, Cheaburua C N, Pat̨achiab S F and Vasilea C 2014 Acta Chem. Iasi 22 75

    Article  Google Scholar 

  23. Jayakumar R, Prabaharan M, Nair S V and Tamura H 2010 Biotechnol. Adv. 28 142

    Article  CAS  Google Scholar 

  24. Mirzaei E, Faridi-Majidi R, Shokrgozar M A and Asghari Paskiabi F 2014 Nanomed. J. 1 137

    Google Scholar 

  25. Mahdavi H, Mirzadeh H, Zohuriaan-Mehr M J and Talebnezhad F 2013 J. Am. Sci. 9 203

    Google Scholar 

  26. Abd-Khorsand S, Saber-Samandarib S and Saber-Samandaric S 2017 Int. J. Biol. Macromol. 101 51

    Article  CAS  Google Scholar 

  27. Karamian E, Kalantar Motamedi M R, Khandan A, Soltani P and Maghsoudi S 2014 Prog. Nat. Sci. 24 150

    Article  CAS  Google Scholar 

  28. Kim H W, Knowles J C and Kim H E 2004 J. Biomed. Mater. Res. B 70 240

    Article  Google Scholar 

  29. Saber-Samandari S and Gross K A 2009 Acta Biomater. 5 2206

    Article  CAS  Google Scholar 

  30. Saber-Samandari S, Saber-Samandari S, Ghonjizade-Samani F, Aghazadeh J and Sadeghi A 2016 Ceram. Int. 42 11055

    Article  CAS  Google Scholar 

  31. Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J and Sadeghi A 2016 Int. J. Biol. Macromol. 86 434

    Article  CAS  Google Scholar 

  32. Guan Y L and Yao K D 1996 J. Appl. Polym. Sci. 61 2325

    Article  CAS  Google Scholar 

  33. Ray S S, Okamoto K and Okamoto M 2003 Macromolecules 36 2355

    Article  CAS  Google Scholar 

  34. Azizi H, Morshedian J, Barikani M and Wagner M 2010 Express Polym. Lett. 4 252

    Article  CAS  Google Scholar 

  35. Koosha M, Mirzadeh H, Shokrgozar M A and Farokhi M 2015 RSC Adv. 5 10479

    Article  CAS  Google Scholar 

  36. Yang J M, Su W Y, Leu T L and Yang M C 2004 J. Membr. Sci. 236 39

    Article  CAS  Google Scholar 

  37. Zheng H, Du Y, Yu J, Huang R and Zhang L 2001 J. Appl. Polym. Sci. 80 2558

    Article  CAS  Google Scholar 

  38. Kabiri Bamoradian K, Mirzadeh H and Zohuriaan-Mehr M J 2007 Iran Polym. J. 16 147

    Google Scholar 

  39. Sabree I, Gough J E and Derby B 2015 Ceram. Int. 41 8425

    Article  CAS  Google Scholar 

  40. Chen P Y and McKittrick J 2011 J. Mech. Behav. Biomed. Mater. 4 961

    Article  CAS  Google Scholar 

  41. Saber-Samandari S, Gulcan H O, Saber-Samandari S and Gazi M 2014 Water Air Soil Pollut. 225 2177

    Article  Google Scholar 

  42. Lee S, Porter M, Wasko S, Lau G, Chen P Y, Novitskaya E E et al 2012 Mater. Res. Soc. Symp. Proc. 1418 177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Saber-Samandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolghadri, M., Saber-Samandari, S., Ahmadi, S. et al. Synthesis and characterization of porous cytocompatible scaffolds from polyvinyl alcohol–chitosan. Bull Mater Sci 42, 35 (2019). https://doi.org/10.1007/s12034-018-1709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1709-9

Keywords

Navigation