Skip to main content
Log in

One-step hydrothermal synthesis of flower-like CoS hierarchitectures for application in supercapacitors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Flower-like CoS hierarchitectures were successfully synthesized through a hydrothermal route in the presence of ethylenediamine as ligand and structure-directing agent. The structure and morphology of the products were characterized by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy and \(\hbox {N}_{2}\) adsorption–desorption isotherm. Flower-like CoS hierarchitectures are constructed by two-dimensional CoS nanopedals interlaced and stacked with each other. When tested as electrode material for supercapacitors, the as-fabricated CoS delivers a specific capacitance of \(357~\hbox {F g}^{-1}\) at \(0.5~\hbox {A g}^{-1}\). After 2000 repetitive charge–discharge cycles, there is only 12.7% loss of the original specific capacitance. The results signify that the CoS supercapacitor possesses good electrochemical performances, suggesting its potential application in supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharma P and Bhatti T S 2010 Energy Convers. Manag.  51 2901

    Article  Google Scholar 

  2. Simon P and Gogotsi Y 2008 Nat. Mater.  7 845

    Article  Google Scholar 

  3. Winter M and Brodd R J 2004 Chem. Rev.  104 4245

    Article  Google Scholar 

  4. Yang Q M, Zhao L, Xu X, Xu L and Luo Y Z 2011 Nat. Commun.   2 381

    Article  Google Scholar 

  5. Huang M, Mi K, Zhang J H, Liu H L, Yu T T, Yuan A H et al 2017 J. Mater. Chem. A  5 266

    Article  Google Scholar 

  6. Maqbool Q, Singh C, Jash P, Paul A and Srivastava A 2017 Chem. Eur. J.  23 4216

    Article  Google Scholar 

  7. Fan H L, Niu R T, Duan J Q, Liu W and Shen W Z 2016 ACS Appl. Mat. Interf.  8 19475

    Article  Google Scholar 

  8. Barkaoui S, Haddaoui M, Dhaouadi H, Raouafi N and Touati F 2015 J. Solid State Chem.  228 226

    Article  Google Scholar 

  9. Tao F, Zhao Y Q, Zhang G Q and Li H L 2007 Electrochem. Commun.  9 1282

    Article  Google Scholar 

  10. Chiu J M, Lin L Y, Yeh P H, Lai C Y, Teng K, Tu C C et al 2015 RSC Adv.  5 83383

    Article  Google Scholar 

  11. Ranaweera C K, Wang Z, Alqurashi E, Kahol P K, Dvomic P R, Gupta B K et al 2016 J. Mater. Chem. A  4 9014

    Article  Google Scholar 

  12. Justin P and Rao G R 2010 Int. J. Hydrog. Energy  35 9709

    Article  Google Scholar 

  13. Lin J Y and Chou S W 2013 RSC Adv.  3 2043

    Article  Google Scholar 

  14. You B, Jiang N, Sheng M L and Sun Y J 2015 Chem. Commun.  51 4252

    Article  Google Scholar 

  15. Xu B, Pan L and Zhu Q Y 2016 J. Mater. Eng. Perform.  25 1117

    Article  Google Scholar 

  16. Couldwell M C, House D A and Penfold B R 1975 Inorg. Chim. Acta   13 61

    Article  Google Scholar 

  17. Herak B R, Prelesnik B and Kristanovic I 1978 Acta Cryst.  34 91

    Article  Google Scholar 

  18. Feng X W, Chen H and Jiang F 2017 J. Colloid Interf. Sci.  494 32

    Article  Google Scholar 

  19. Caceres M, Lobato A, Mendoza N J and Baonza V G 2016 Phys. Chem. Chem. Phys.  18 26192

    Article  Google Scholar 

  20. Parambadath S, Mathew A and Ha C S 2015 Micropor. Mesopor. Mater.  215 67

    Article  Google Scholar 

  21. Ramkumar J, Ananthkumar S and Babu S M 2014 Sol. Energy Mater. Sol. Cells  106 177

    Google Scholar 

  22. Xing J C, Zhu Y L, Zhou Q W, Zheng X D and Jiao Q J 2014 Electrochim. Acta  136 550

  23. Zhang C, Chen Q and Zhan H 2016 ACS Appl. Mater. Interf.  8 22977

    Article  Google Scholar 

  24. Jiang C, Zhao B, Cheng J Y, Li J Q, Zhang H J, Tang Z H et al 2015 Electrochim. Acta 173 399

    Article  Google Scholar 

  25. Lee J W, Ahn T, Soundararajan D, Ko J M and Kim J D 2011 Chem. Commun.  47 6305

    Article  Google Scholar 

  26. Liu B, Yuan H, Zhang Y, Zhou Z and Song D 1999 J. Power Sour.  79 277

    Article  Google Scholar 

  27. Zhang X, Miao W, Li C, Sun X Z, Wang K and Ma Y W 2015 Mater. Res. Bull.  71 111

    Article  Google Scholar 

  28. Ingole R S and Lokhande B J 2016 Bull. Mater. Sci.  39 1603

    Article  Google Scholar 

  29. Nguyen V H and Shim J J 2015 Electrochim. Acta 166 302

    Article  Google Scholar 

  30. Liu G J, Wang B, Wang L, Liu T F, Gao T T and Wang D L 2016 RSC Adv.  6 54076

    Article  Google Scholar 

  31. Zhang Q F, Xu C M and Lu B G 2014 Electrochim. Acta  132 180

    Article  Google Scholar 

  32. Zhang Y W, Tian J Q, Li H Y, Wang L, Qin X Y, Asiri A M et al 2012 Langmuir  28 12893

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China (No. 51672112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Xiang, L., Xi, D. et al. One-step hydrothermal synthesis of flower-like CoS hierarchitectures for application in supercapacitors. Bull Mater Sci 41, 54 (2018). https://doi.org/10.1007/s12034-018-1570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1570-x

Keywords

Navigation