Skip to main content
Log in

Mechanochemical synthesis and characterization of pure Co2B nanocrystals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt boride (Co2B) is a significant transition metal boride having a wide range of usage area due to its high oxidation, abrasion and corrosion resistance as well as its superior electrochemical, magnetic and anisotropic properties. In this study, pure Co2B nanocrystals were synthesized with Co, B2O3 and Mg as starting materials via the mechanochemical synthesis (MCS) method by high-energy planetary ball mill in a hardened steel vial with hardened steel balls. All the experiments were conducted under Ar atmosphere at different rotational speeds and at 20 : 1–30 : 1–40 : 1 ball-to-powder ratios. Leaching of Co2B + MgO powder mixtures occurred after milling and purified with acetic acid and pure Co2B nanocrystals were obtained in solid form. The Co2Bs were characterized through X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller and specific density analyses, and effects of synthesis parameters on product properties were revealed. Surface areas of the powders synthesized at 40 : 1 ball-to-powder ratio at different rotational speeds were measured as 21.14, 40.36 and 52.33 m2 g−1, respectively. Crystallite sizes of Co2B nanocrystals were between 7.27 and 9.84 nm and their specific density varied between 7.61 and 7.78 g cm−3. It was determined that all samples were saturated and exhibited hysteresis and ferromagnetic behaviours, and saturation magnetization was between 35 and 50 emu g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Pratt J M and Swinden G 1969 J. Chem. Soc. D 22 1321

    Article  Google Scholar 

  2. Maybury P C, Mitchell R W and Hawthorn M F 1974 J. Chem. Soc.: Chem. Commun. 14 534

    Google Scholar 

  3. Nitta Y, Imanaka T and Teranishi S 1980 Bull. Chem. Soc. Jpn. 53 3154

    Article  Google Scholar 

  4. Chen Y Z and Wu K J 1991 Appl. Catal. 78 185

    Article  Google Scholar 

  5. Glavee G N, Klabunde K J, Sorensen C M and Hadjapanayis G C 1993 Langmuir 9 162

    Article  Google Scholar 

  6. Petit C and Pileni M P 1997 J. Magn. Magn. Mater. 166 82

    Article  Google Scholar 

  7. Ma H Y, Li G Z, Zhang J P, Shen Q and Wang X 1998 J. Dispers. Sci. Technol. 19 511

    Article  Google Scholar 

  8. Wu C, Wu F, Bai Y, Yi B and Zhang H 2005 Mater. Lett. 59 1748

    Article  Google Scholar 

  9. Liu B H, Li Z P and Suda S 2006 J. Alloys Compd. 415 288

    Article  Google Scholar 

  10. Jeong S U, Cho E A, Nam S W, Oh I H, Jung U H and Kim S H 2007 Int. J. Hydrogen Energy 32 1749

    Article  Google Scholar 

  11. Ingersoll J C, Mani N, Thenmozhiyal J C and Muthaiah A 2007 J. Power Sources 173 450

    Article  Google Scholar 

  12. Walter J C, Andrew Z, Daniel M, Thornburg M and Revankar S 2008 J. Power Sources 179 335

    Article  Google Scholar 

  13. Liu B H and Li Q 2008 Int. J. Hydrogen Energy 33 7385

    Article  Google Scholar 

  14. Wang Y P, Wang Y J, Ren Q L, Li L, Jiao L F, Song D W, Liu G et al 2010, Fuel Cells 10 132

    Google Scholar 

  15. Hongjing T, Qingjie G and Dongyan X 2010 J. Power Sources 195 2136

    Article  Google Scholar 

  16. Chuan W, Ying B, Dan-Xian L, Wu F, Pang M L and Yi B L 2011 Catal. Today 170 33

    Article  Google Scholar 

  17. Ozerova A M, Bulavchenko O A, Komova O V, Netskina O V, Zaikovskii V I, Odegova G V et al 2012, Kinet. Catal. 53 511

    Article  Google Scholar 

  18. Kanomata T, Ise Y, Kumagai N, Haga A, Kamishima K, Goto T, Kimura H M et al 1997, J. Alloys Compd. 259 L1

    Article  Google Scholar 

  19. Choi S, Lapitan L D S, Cheng Y and Watanabe T 2014 Adv. Powder Technol. 25 365

    Article  Google Scholar 

  20. Iizumi K, Kudaka K, Maezawa D and Sasaki T 1999 J. Ceram. Soc. Jpn. 107 491

    Article  Google Scholar 

  21. Welham N J 2000 J. Am. Ceram. Soc. 83 1290

    Article  Google Scholar 

  22. Kudaka K, Iizumi K, Sasaki T and Okada S 2001 J. Alloys Compd. 315 104

    Article  Google Scholar 

  23. Kudaka K, Iizumi K, Izumi H and Sasaki T 2001 J. Mater. Sci. Lett. 20 1619

    Article  Google Scholar 

  24. Iizumi K, Sekiya C, Okadac S, Kudou K and Shishido T 2006 J. Eur. Ceram. Soc. 26 635

    Article  Google Scholar 

  25. Kim J W, Shim J H, Ahn J P, Cho Y W, Kim J H and Oh K H 2008 Mater. Lett. 62 2461

    Article  Google Scholar 

  26. Jiang X, Trunov M A, Schoenitz M, Dave R N and Dreizin E L 2009 J. Alloys Compd. 478 246

    Article  Google Scholar 

  27. Akgün B, Çamurlu H E, Topkaya Y and Sevinç N 2011 Int. J. Refract. Met. Hard Mater. 29 601

    Article  Google Scholar 

  28. Çamurlu H E 2011 J. Alloys Compd. 509 5431

    Article  Google Scholar 

  29. Balcı O, Ağaoğulları D, Duman İ and Öveçoğlu M L 2012 Ceram. Int. 38 2201

    Article  Google Scholar 

  30. Ağaoğulları D, Duman İ and Öveçoğlu M L 2012 Ceram. Int. 38 6203

    Article  Google Scholar 

  31. Balcı Ö, Ağaoğulları D, Duman İ and Öveçoğlu M L 2012 Powder Technol. 225 136

    Article  Google Scholar 

  32. Shao J, Xiao X, Fan X, Chen L, Zhu H, Yu S et al 2013, Mater. Lett. 109 203

    Article  Google Scholar 

  33. Bahrami-Karkevandi M, Ebrahimi-Kahrizsangi R and Nasiri-Tabrizi B 2014 Int. J. Refract. Met. Hard Mater. 46 117

    Article  Google Scholar 

  34. Torabi O, Naghibi S, Golabgir M H, Tajizadegan H and Jamshidi A 2015 Ceram. Int. 41 5362

    Article  Google Scholar 

  35. Jafari M, Tajizadegan H, Golabgir M H, Chami A and Torabi O 2015 Int. J. Refract. Met. Hard Mater. 50 86

    Article  Google Scholar 

  36. Torabi O, Ebrahimi-Kahrizsangi R, Golabgir M H, Tajizadegan H and Jamshidi A 2015 Int. J. Refract. Met. Hard Mater. 48 102

    Article  Google Scholar 

  37. Wang Y D, Guang X Y and Mu P 2012 Chin. Sci. Bull. 57 4225

    Article  Google Scholar 

  38. Suryanarayana C 2004 Mechanical alloying and milling (New York: Marcel Dekker)

  39. Önder O 2009 Synthesis of lithium borides by mechanochemical process Master Thesis (Ankara: Middle East Technical University)

  40. Can M M, Özcan Ş, Ceylan A and Fırat T 2010 Mater. Sci. Eng. B 172 72

    Article  Google Scholar 

  41. Avar B and Özcan S 2015 J. Alloys Compd. 650 53

    Article  Google Scholar 

  42. Şimşek T 2014 Investigation of the zirconium diboride nanocrystal coated different materials mechanic and mechinability properties PhD Thesis (Ankara: Gazi University)

Download references

Acknowledgement

We are very grateful to Eti Maden Works General Management for financial support and laboratory facilities usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MUSTAFA BARIS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BARIS, M., SIMSEK, T. & AKKURT, A. Mechanochemical synthesis and characterization of pure Co2B nanocrystals. Bull Mater Sci 39, 1119–1126 (2016). https://doi.org/10.1007/s12034-016-1231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1231-x

Keywords

Navigation