Skip to main content
Log in

Synthesis and Hydrogen Desorption Properties of Mg1.7Al0.15Ti0.15Ni-CNT Nanocomposite Powder

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this research, the effects of nanocrystallization and incorporation of aluminum, titanium, and carbon nanotubes (CNTs) on hydrogen desorption behavior of Mg2Ni alloy were investigated. Toward this purpose, nanocrystalline Mg2Ni intermetallic compound with average grain size of 20 nm was prepared by ball milling of elemental magnesium and nickel powders. Mg2Ni powder was then ball milled with aluminum and titanium powders for 20 h to dissolve these elements into the Mg2Ni structure, leading to the formation of Mg1.7Al0.15Ti0.15Ni compound. The elemental x-ray mapping analysis revealed the uniform dissolution of aluminum and titanium inside the Mg2Ni structure. Mg2Ni and Mg1.7Al0.15Ti0.15Ni compounds were further ball milled with 3 wt.% CNT for 5 h. The high-resolution field emission scanning electron microscopy and transmission electron microscopy revealed that CNTs have retained their tubular shape after ball-milling process. The hydrogen desorption properties of the samples were identified using a Sieverts-type apparatus at 473 K. The Mg2Ni, Mg2Ni-CNT, and Mg1.7Ti0.15Al0.15-CNT samples showed the desorbed hydrogen of 0.17, 0.25, and 0.28 wt.% after 1 h, respectively, indicating 47 and 65% increase in the hydrogen desorption capability of Mg2Ni via CNT addition and co-presence of aluminum-titanium-CNT. The direct hydrogen diffusion through CNTs and development of local atomic distortion due to substitution of magnesium atoms by aluminum and titanium appears to be responsible for enhancement of desorption behavior of Mg1.7Al0.15Ti0.15-3 wt.% CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Vyas, P. Jain, J. Khan, V. Kulshrestha, A. Jain, and I.P. Jain, Effect of Cu Catalyst on the Hydrogenation and Thermodynamic Properties of Mg2Ni, Int. J. Hydrogen Energy, 2012, 37, p 3755–3760

    Article  Google Scholar 

  2. A. Ranjbar, M. Ismail, Z.P. Guo, X.B. Yu, and H.K. Liu, Effects of CNTs on the Hydrogen Storage Properties of MgH2 and MgH2-BCC Composite, Int. J. Hydrogen Energy, 2010, 35, p 7821–7826

    Article  Google Scholar 

  3. H. Imamura, N. Sakasai, and T. Fujinaga, Characterization and Hydriding Properties of Mg-Graphite Composites Prepared by Mechanical Grinding as New Hydrogen Storage Materials, J. Alloy. Compd., 1997, 253–254, p 34–37

    Article  Google Scholar 

  4. Q. Li, Q. Lin, L. Jiang, K. Chou, F. Zhan, and Q. Zheng, Characteristics of Hydrogen Storage Alloy Mg2Ni Produced by Hydriding Combustion Synthesis, J. Mater. Sci. Technol., 2004, 20, p 209–212

    Google Scholar 

  5. S. Kumar Pandey, R. Kumar Singh, and O.N. Srivastava, Investigations on Hydrogenation Behaviour of CNT Admixed Mg2Ni, Int. J. Hydrogen Energy, 2009, 34, p 9379–9384

    Article  Google Scholar 

  6. M. Jurczyk, L. Smardz, E. Jankowska, M. Nowak, and K. Smardz, Nanoscale Mg-Based Materials for Hydrogen Storage, Int. J. Hydrogen Energy, 2008, 33, p 374–380

    Article  Google Scholar 

  7. N. Gerard, S. Ono In: Hydrogen in Intermetallic Compounds II, ed. L. Schlapbach, Springer, Berlin, Chapter 4, 1992, p 178.

  8. I.P. Jain, C. Lal, and A. Jain, Hydrogen Storage in Mg: A Most Promising Material, Int. J. Hydrogen Energy, 2010, 35, p 5133–5144

    Article  Google Scholar 

  9. C.X. Shang and Z.X. Guo, Effect of Carbon on Hydrogen Desorption and Absorption of Mechanically Milled MgH2, J. Power Source, 2004, 129(1), p 73–80

    Article  Google Scholar 

  10. L. Li, T. Akiyama, and J. Yagi, Activity and Capacity of Hydrogen Storage Alloy Mg2NiH4 Produced by Hydriding Combustion Synthesis, J. Alloy. Compd., 2001, 316, p 118–123

    Article  Google Scholar 

  11. T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, and M. Kanda, Hydrogen Storage Properties of New Ternary System Alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14, J. Alloy. Compd., 2000, 311, p L5–L7

    Article  Google Scholar 

  12. J. Yin, T. Yamada, O. Yoshinari, and K. Tanaka, Improvement of Hydrogen Storage Properties of Mg-Ni Alloys by Rare-Earth Addition, Mater. Trans., 2001, 42, p 712–716

    Article  Google Scholar 

  13. A. Zaluska, L. Zaluski, and J.O. Strom-olsen, Hydrogen Absorption in Nanocrystalline Mg2Ni Formed by Mechanical Alloying, J. Appl. Phys. A, 1995, 72, p 245–249

    Google Scholar 

  14. J. Huot, G. Liang, and R. Schulz, Mechanically Alloyed Metal Hydride Systems, J. Appl. Phys. A, 2001, 72(2), p 187–195

    Article  Google Scholar 

  15. G. Hao, Z. Yunfeng, and L. Liquan, Characterization of Hydrogen Storage Properties of Mg-30 wt.% Ti1.0V1.1Mn0.9 Composite, J. Alloy. Compd., 2006, 242(1–2), p 382–387

    Google Scholar 

  16. M. Jurczyk, L. Smardz, M. Nowak, and E. Jankowska, Nanocrystalline LaNi5-Type Electrode Materials for Ni-MH x Batteries, J. Solid State Chem., 2003, 171(1–2), p 30–37

    Article  Google Scholar 

  17. J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, and P. Peshev, Hydrogen Sorption Properties of Graphite-Modified Magnesium Nanocomposites Prepared by Ball-Milling, J. Alloy. Compd., 2004, 366, p 298–302

    Article  Google Scholar 

  18. C.Z. Eu, P. Wang, X. Yao, C. Liu, D.M. Chen, and G.Q. Lu, Effect of Carbon/Noncarbon Addition on Hydrogen Storage Behaviors of Magnesium Hydride, J. Alloy. Compd., 2006, 414, p 259–264

    Article  Google Scholar 

  19. J.L. Bobet, B. Chevalier, and B. Darriet, Effect of Reactive Mechanical Grinding on Chemical and Hydrogen Sorption Properties of the Mg + 10 wt.% Co Mixture, J. Alloy. Compd., 2002, 330–332, p 738–742

    Article  Google Scholar 

  20. X.L. Wang, J.P. Tu, P.L. Zhang, X.B. Zhang, C.P. Chen, and X.B. Zhao, Hydrogenation Properties of Ball-Milled Composite, Int. J. Hydrogen Energy, 2007, 32(15), p 3406–3410

    Article  Google Scholar 

  21. H. Imamura, I. Kitazawa, Y. Tanabe, and Y. Sakata, Hydrogen Storage in Carbon/Mg Nanocomposites Synthesized by Ball Milling, Int. J. Hydrogen Energy, 2007, 32(13), p 2408–2411

    Article  Google Scholar 

  22. A. Ranjbar, Z.P. Guo, X.B. Yu, D. Wexler, A. Calka, and C.J. Kim, Hydrogen Storage Properties of MgH2-SiC Composites, Mater. Chem. Phys., 2009, 114(1), p 168–172

    Article  Google Scholar 

  23. J.L. Bobet, E. Akiba, and B. Darriet, Study of Mg-M (M = Co, Ni and Fe) Mixture Elaborated by Reactive Mechanical Alloying: Hydrogen Sorption Properties, Int. J. Hydrogen Energy, 2001, 26(5), p 493–501

    Article  Google Scholar 

  24. C.X. Shang, M. Bououdina, and Z.X. Guo, Structural Stability of Mechanically Alloyed (Mg + 10Nb) and (MgH+ 10Nb) Powder Mixtures, J. Alloy. Compd., 2003, 349(1–2), p 217–223

    Article  Google Scholar 

  25. C.X. Shang, M. Bououdina, Y. Song, and Z.X. Guo, Mechanical Alloying and Electronic Simulations of (MgH+ M) Systems (M = Al, Ti, Fe, Ni, Cu and Nb) for Hydrogen Storage, Int. J. Hydrogen Energy, 2004, 29(1), p 73–80

    Article  Google Scholar 

  26. Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, C. Lukey, and H.K. Liu, Effects of Iron Oxide (Fe2O3, Fe3O4) on Hydrogen Storage Properties of Mg-Based Composites, J. Alloy. Compd., 2006, 422(1–2), p 299–304

    Article  Google Scholar 

  27. A. Patah, A. Takasaki, and J.S. Szmyd, Influence of Multiple Oxide (Cr2O3/Nb2O5) Addition on the Sorption Kinetics of MgH2, Int. J. Hydrogen Energy, 2009, 34(7), p 3032–3037

    Article  Google Scholar 

  28. Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, and H.K. Liu, Effects of Carbon Black, Graphite and Carbon Nanotube Additives on Hydrogen Storage Properties of Magnesium, J. Alloy. Compd., 2007, 427(1–2), p 94–100

    Google Scholar 

  29. Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, J. Wu, and P.H.L. Notten, Noticeable Improvement in the Desorption Temperature from Graphite in Rehydrogenated MgH2/Graphite Composite, Mater. Sci. Eng. A, 2007, 447(1–2), p 180–185

    Article  Google Scholar 

  30. A. Zaluska, L. Zaluski, and J.O. Strom-olsen, Nanocrystalline Magnesium for Hydrogen Storage, J. Alloy. Compd., 1999, 288, p 217–225

    Article  Google Scholar 

  31. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, and P. Matteazzi, Mg-Ni-Cu Mixtures for Hydrogen Storage: A Kinetic Study, Intermatallics, 2010, 18, p 203–211

    Article  Google Scholar 

  32. E. Grigorova, M. Khristov, M. Khrussanova, J.L. Bobet, and P. Peshev, Effect of Additives on the Hydrogen Sorption Properties of Mechanically Alloyed Composites Based on Mg and Mg2Ni, Int. J. Hydrogen Energy, 2005, 30, p 1099–1105

    Article  Google Scholar 

  33. T. Kiyobayashi, K. Komiyama, N. Takeichi, H. Tanaka, H. Senoh, and H.T. Takeshita, Hydrogenation of Nanostructured Graphite by Mechanical Grinding Under Hydrogen Atmosphere, Mater. Sci. Eng. B, 2004, 108(1–2), p 134–137

    Article  Google Scholar 

  34. G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1, p 22–31

    Article  Google Scholar 

  35. D.P. Broom, The Accuracy of Hydrogen Sorption Measurements on Potential Storage Materials, Int. J. Hydrogen Energy, 2007, 32, p 4871–4888

    Article  Google Scholar 

  36. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, Menlo Park, 1978

    Google Scholar 

  37. J.S. Benjamin and T.E. Volin, Mechanism of Mechanical Alloying, Metall. Mater. Trans. A, 1974, 5, p 1929–1934

    Google Scholar 

  38. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46, p 1–184

    Article  Google Scholar 

  39. L.W. Huang, O. Elkedim, M. Nowak, M. Jurczyk, R. Chassagnon, and D.W. Meng, Synergistic Effects of Multiwalled Carbon Nanotubes and Al on the Electrochemical Hydrogen Storage Properties of Mg2Ni-Type Alloy Prepared by Mechanical Alloying, Int. J. Hydrogen Energy, 2012, 37, p 1538–1545

    Article  Google Scholar 

  40. Fu Liu, Xiaobin Zhang, Jipeng Cheng, Jiangpin Tu, Fanzhi Kong, Changpin Chen, and Fu Liu, Preparation of Short Carbon Nanotubes by Mechanical Ball Milling and their Hydrogen Adsorption Behavior, Carbon, 2003, 41, p 2527–2532

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of the Iran National Science Foundation (INSF) under grant 85054/35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Enayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enayati, M.H., Karimzadeh, F., Jafari, M. et al. Synthesis and Hydrogen Desorption Properties of Mg1.7Al0.15Ti0.15Ni-CNT Nanocomposite Powder. J. of Materi Eng and Perform 24, 1100–1106 (2015). https://doi.org/10.1007/s11665-015-1391-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1391-7

Keywords

Navigation