Skip to main content
Log in

Hydrothermal growth of ZnO nanoflowers and their photocatalyst application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO nanoflowers were prepared by the hydrothermal method and studied by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and photoluminescence. ZnO nanoflowers with star-like morphology were of pure wurtzite phase. The edges of the petals were composed of assemblies of smaller nanocrystallites. Green and orange emissions in photoluminescence were attributed to O vacancies and O interstitials, respectively. Furthermore, ZnO nanoflowers demonstrated the effective photocatalytic activities, and O vacancies and O interstitials were considered to be the active sites of the ZnO photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501

    Article  Google Scholar 

  2. Litton C W, Reynolds D C and Collins T C (Ed) 2011 Zinc oxide materials for electronic and optoelectronic device application (John Wiley & Sons Ltd.)

  3. Wang L W, Kang Y F, Liu X H, Zhang S M, Huang W P and Wang S R 2012 Sens. Actuators B: Chem. 162 237

    Article  Google Scholar 

  4. Mirabbaszadeh K and Mehrabian M 2012 Phys. Scr. 85 035701

    Article  Google Scholar 

  5. Ahn M-W, Park K-S, Heo J-H, Park J-G, Kim D-W, Choi K J, Lee J-H and Hong S-H 2008, Appl. Phys. Lett. 93 263103

    Article  Google Scholar 

  6. Li D, She J C, Xu S Z and Deng S Z 2013 IEEE Trans. Electr. Dev. 60 2924

    Article  Google Scholar 

  7. Zhao Q, Huang C-K, Zhu R, Xu J, Chen L and Yu D P 2011 Solid State Commun. 151 1650

    Article  Google Scholar 

  8. Kuo S-Y and Lin H-I 2014, Nanoscale Res. Lett. 9 70

    Article  Google Scholar 

  9. Zhang M-L, Jin F, Zheng M-L, Liu J, Zhao Z-S and Duan X-M 2014, RSC Adv. 4 10462

    Article  Google Scholar 

  10. Law M, Greene L E, Johnson J C, Saykally R and Yang P D 2005 Nat. Mater. 4 455

    Article  Google Scholar 

  11. Zhang Q F, Dandeneau C S, Zhou X Y and Cao G Z 2009 Adv. Mater. 11 4871

    Google Scholar 

  12. Tian C G, Zhang Q, Wu A P, Jiang M J, Liang Z L, Jiang B J and Fu H G 2012 Chem. Commun. 48 2858

    Article  Google Scholar 

  13. Bai X J, Wang L, Zong R L, Lv Y H, Sun Y Q and Zhu Y F 2013 Langmuir 29 3097

    Article  Google Scholar 

  14. Han Z Z, Liao L, Wu Y T, Pan H B, Shen S F and Chen J Z 2012 J. Hazard. Mater. 217–218 100

    Article  Google Scholar 

  15. Park S, Kim J S, Yoo K, Lee J C, Anderson W A and Lee J H 2007 J. Nanosci. Nanotechnol. 7 4069

    Article  Google Scholar 

  16. Aal A A, Mahmoud S A and Aboul-Gheit A-K 2009, Mater. Sci. Eng. C 29 831

    Article  Google Scholar 

  17. Baruah S, Jaisai M and Dutta J 2012 Catal. Sci. Technol. 2 918

    Article  Google Scholar 

  18. Mohan R, Krishnamoorthy K and Kim S-J 2012, Chem. Phys. Lett. 539–540 83

    Article  Google Scholar 

  19. Xu F, Yuan Z-Y, Du G-H, Ren T-Z, Bouvy C and Su B-L 2006, Nanotechnology 17 588

    Article  Google Scholar 

  20. Lam S-M, Sin J-C, Abdullah A Z and Mohamed A R 2013 Mater. Lett. 93 423

    Article  Google Scholar 

  21. Bae J, Han J B, Zhang X-M, Wei M, Duan X, Zhang Y and Wang Z L 2009 J. Phys. Chem. C 113 10379

    Article  Google Scholar 

  22. Chu D W, Masuda Y, Ohji T and Kato K 2010 Langmuir 26 2811

    Article  Google Scholar 

  23. Eley C, Li T, Liao F L, Fairclough S M, Smith J M, Smith G and Tsang S C E 2014 Angew. Chem. Int. Ed. 53 7838

    Article  Google Scholar 

  24. Phuruangrat A, Yayapao O, Thongtem T and Thongtem S 2014 J. Nanomater. 2014 367529

    Google Scholar 

  25. Zhang Y Y, Raman M J, Stefanakos E K and Goswami Y 2012 J. Nanomater. 2012 624520

    Google Scholar 

  26. Fan Z Y and Lu J G 2005 J. Nanosci. Nanotechnol. 5 1561

    Article  Google Scholar 

  27. Baruah B and Dutta J 2009 Sci. Technol. Adv. Mater. 10 013001

    Article  Google Scholar 

  28. Mondal C, Sinha A K, Ganguly M, Pal J, Dhara S, Negishi Y and Pal T 2014 CrystEng Comm 16 4322

    Article  Google Scholar 

  29. Wang Y X, Li X Y, Lu G, Quan X and Chen G 2008 J. Phys. Chem. C 112 7332

    Article  Google Scholar 

  30. Damen T C, Porto S P S and Tell B 1966 Phys. Rev. 142 570

    Article  Google Scholar 

  31. Sun Y J, Wang L, Yu X G and Chen K Z 2012 CrystEngComm 14 3199

    Article  Google Scholar 

  32. Yuan J Q, Choo E S G, Tang X S, Sheng Y, Ding J and Xue J M 2010 Nanotechnology 21 185606

    Article  Google Scholar 

  33. Xue X-Y, Chen Z-H, Xing L-L, Ma C-H, Chen Y-J and Wang T-H 2010, J. Phys. Chem. C 114 18607

    Article  Google Scholar 

  34. Hu Q, Tong G X, Wu W H, Liu F T, Qian H S and Hong D Y 2013 CrystEngComm 15 1314

    Article  Google Scholar 

  35. van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715

    Article  Google Scholar 

  36. Fabbri F, Villani M, Catellani A, Calzolari A, Cicero G, Calestani D, Calestani G, Zappettini A, Dierre B, Sekiguchi T and Salviati G 2014 Sci. Rep. 4 5158

    Google Scholar 

  37. Zhu Q, Xie C S, Li H Y, Yang C Q, Zhang S P and Zeng D W 2014 J. Mater. Chem. C 2 4566

    Article  Google Scholar 

  38. Tam K H, Cheung C K, Leung Y H, Djurišić A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L and Ge W K 2006 J. Phys. Chem. B 110 20865

    Article  Google Scholar 

  39. Willander M, Nur O, Sadaf J R, Qadir M I, Zaman S, Zainelabdin A, Bano N and Hussain I 2010 Materials 3 2643

    Article  Google Scholar 

  40. Gong Y Y, Andelman T, Neumark G F, O’Brien S and Kuskovsky I G 2007 Nanoscale Res. Lett. 2 297

    Article  Google Scholar 

  41. Janotti A and Van de Walle C G 2005 Appl. Phys. Lett. 87 122102

    Article  Google Scholar 

  42. Liao Z, Zhang H, Zhou Y, Xu J, Zhang J and Yu D 2008 Phys. Lett. A 372 4505

    Article  Google Scholar 

  43. Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403

    Article  Google Scholar 

  44. Ahn C H, Kim Y Y, Kim D C, Mohanta S K and Cho H K 2009 J. Appl. Phys. 105 013502

    Article  Google Scholar 

  45. Wu L L, Wu Y S, Pan X R and Kong F Y 2006 Opt. Mater. 28 418

    Article  Google Scholar 

  46. Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H and Seong S G 2012 Appl. Phys. Lett. 100 101906

    Article  Google Scholar 

  47. Wang J C, Liu P, Fu X Z, Li Z H, Han W and Wang X X 2009 Langmuir 25 1218

    Article  Google Scholar 

  48. Lin X P, Huang T, Huang F Q, Wang W D and Shi J L 2006 J. Phys. Chem. B 110 24629

    Article  Google Scholar 

  49. Horikoshi S, Saitou A, Hidaka H and Serpone N 2003 Environ. Sci. Technol. 37 5813

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Talent Plan at Anhui University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JINCHENG FAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FAN, J., LI, T. & HENG, H. Hydrothermal growth of ZnO nanoflowers and their photocatalyst application. Bull Mater Sci 39, 19–26 (2016). https://doi.org/10.1007/s12034-015-1145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1145-z

Keywords

Navigation