Skip to main content
Log in

Processing and characterization of extruded PET and its r-PET and MWCNT nanocomposite thin films by spin coating

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The objective of the present study was basic understanding of the formation of thin film morphology by spin coating using reorganized polyethylene terephthalate (r-PET) and multiwalled carbon nanotubes (MWCNTs) as fillers in PET. A study of the correlation between physical properties of the PET films and its surface morphology was carried out using atomic force microscopy-based power spectral density (PSD) analysis. No significant work of surface analysis, using PSD of thin films of PET has been reported till date. Dilute solution of PET, PET with 3 wt% (r-PET) and PET with 3 wt% (2 wt% r-PET + 1 wt% MWCNT) filler were prepared using trifluoroacetic acid (TFA) as a solvent and thin films were fabricated on glass substrate by the optimized spin coating technique. Preparation of r-PET and r-PET + MWCNT fillers was obtained by the precipitation method using TFA as a solvent and acetone as an antisolvent. The samples before spin coating were extruded and for comparison, a film of non-extruded PET was also prepared. Structural studies by Fourier transform infrared and X-ray diffraction show higher degree of crystallinity in r-PET and decrease in chain entanglements. Owing to the crystallizing behaviour of r-PET, it allows better dispersion of MWCNT in the polymer matrix as compared with PET. The samples with fillers of MWCNT show more compact and unique mesh-like globular structure, indicating application for electromagnetic shielding foams and fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lijima S 1991 Nature 354 56

    Article  Google Scholar 

  2. Moniruzzaman M and Winey K I 2006 Macromolecules 39 5194

    Article  Google Scholar 

  3. Gupta S J, Prabhu P, Singh A, Sreeram B, Dhulia V, Yadav B S and Kanwar A 2009 J. Mol. Cryst. Liquid Cryst. 511 1545

    Google Scholar 

  4. Deshpande V D and Jape S 2009 J. Appl. Polym. Sci. 111 1318

    Article  Google Scholar 

  5. Murthy N S, Zero K and Minor H 1994 Macromolecules 27 1484

    Article  Google Scholar 

  6. Lin S B and Koenig J L 1982 J. Polym. Sci.: Polym. Phys. Ed. 20 2277

    Google Scholar 

  7. Lin S B and Koenig J L 1984 J. Polym. Sci.: Polym. Symp. 71 121

    Google Scholar 

  8. Oromiehie A and Mamizadeh A 2004 Polym. Int. 53 728

    Article  Google Scholar 

  9. Hu G, Feng X, Zhang S and Yang M 2008 J. Appl. Polym. Sci. 108 4080

    Article  Google Scholar 

  10. Hsiao A-E, Tsai S-Y, Hsu M-W and Chang S-J 2012, Nanoscale Res. Lett. 7 240

    Article  Google Scholar 

  11. Mallakpour S and Zadehnazari A 2014 Bull. Mater. Sci. 37 1065

    Article  Google Scholar 

  12. Song J, Liang J, Liu X, Krause W E, Hinestroza J P and Rojas O J 2009 Thin Solid Films 517 4348

    Article  Google Scholar 

  13. Mazinani S, Ajji A and Dubois C 2010 J. Polym. Sci.: Part B: Polym. Phys. 48 2052

    Article  Google Scholar 

  14. Xianwen R, Weng L T, Chan C-M and Ng K-M 2013, Surf. Interface Anal. 45 1291

    Article  Google Scholar 

  15. Vedula J and Tonelli A E 2006 J. Polym. Sci.: Part B 45 735

    Article  Google Scholar 

  16. Singh A R and Deshpande V D 2013 AIP Conf. Proc. 1538 190

    Article  Google Scholar 

  17. Ubale A U, Sakhare Y S, Bhute M V, Belkhedkar M R and Singh A 2013 Solid State Sci. 16 134e142

    Article  Google Scholar 

  18. Schmidt R H, Kinloch I A, Burgess A N and Windle A H 2007 Langmuir 23 5707

    Article  Google Scholar 

  19. Prasad S G, De A and De U 2011 Int. J. Spectrosc. 2011 Article ID 810936

  20. Cole K C, Guevremont J, Ajji A and Dumoulin M M 1994 Appl. Spectrosc. 48 1513

    Article  Google Scholar 

  21. Bullions T A, Wei M, Porbeni F E, Gerber M J, Peet J, Balik M, White J L and Tonelli A 2002 J. Polym. Sci.: Part B: Polym. Phys. 40 992

    Article  Google Scholar 

  22. Ilišković N and Bravar M 1986 Polym. Degrad. Stabil. 15 173

    Article  Google Scholar 

  23. Renyuan Q, Deyan S and Fuge Sun 1996 Macromol. Chem. Phys. 197 1485

  24. Dhall S and Jaggi N 2014 Bull. Mater. Sci. 37 1427

    Article  Google Scholar 

  25. Barbadikar D, Gautam R, Sahare S, Patrikar R and Bhatt J 2013 Bull. Mater. Sci. 36 483

    Article  Google Scholar 

  26. Santhilkumar N, Sahoo N K, Thakur S and Tokas R B 2005 Appl. Surf. Sci. 252 1608

    Article  Google Scholar 

  27. Manvi G, Singh A, Jagtap R N and Kothari D C 2012 Prog. Org. Coat. 75 139

    Article  Google Scholar 

  28. Ferreira Q, Bernardo G, Charas A, Alcácer L and Morgado J 2010 J. Phys. Chem. C 114 572

    Article  Google Scholar 

  29. Xu Y, Jia H-B, Piao J-N, Ye S-R and Huang J 2008 J. Mater. Sci. 43 417

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to UGC for providing UGC-SAP Fellowship and UGC major Research project (F No. 41-881/2012 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VINEETA D DESHPANDE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, A.R., DESHPANDE, V.D. Processing and characterization of extruded PET and its r-PET and MWCNT nanocomposite thin films by spin coating. Bull Mater Sci 39, 167–175 (2016). https://doi.org/10.1007/s12034-015-1116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1116-4

Keywords

Navigation