Skip to main content
Log in

Synthesis of graphene using gamma radiations

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Considering the advantages of radiolytic synthesis such as the absence of toxic chemical as a reducing agent, uniform distribution of reducing agent and high purity of product, the synthesis of graphene (rGO) from graphene oxide (GO) by the gamma irradiation technique using a relatively low dose rate of 0.24 kGy h−1 has been described. Structural and physicochemical properties of GO and rGO were investigated with the help of various characterization techniques. The presence of peak at 271 nm in ultraviolet–visible spectrum, C = C aromatic stretching vibrations between 1450 and 1600 cm−1 in the Fourier transform infrared spectrum and significant decrease in photoluminescence peak intensity at 470 and 567 nm wavelengths represent the reduction of GO to graphene by gamma irradiation. The decrease in stacking height from 7.71 nm in GO to 3.52 nm in rGO as observed from the X-ray powder diffraction analysis further confirms the same. Raman spectra show significantly lower D to G band ratio for rGO compared with GO. Also, the cyclic voltammograms obtained using GO- and rGO-modified electrodes (working electrode) in standard redox system show enhanced peak intensities together with decrease in potential difference between oxidation and reduction peaks in case of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009, Nature 457 706

    Article  Google Scholar 

  2. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008, Nano Lett. 8 902

    Article  Google Scholar 

  3. Li D, Mülleri M B, Gilje S, Kaner R B and Wallace G G 2008, Nat. Nanotechnol. 3 101

    Article  Google Scholar 

  4. Segal M 2009, Nat. Nanotechnol. 4 612

    Article  Google Scholar 

  5. Jo G, Choe M, Lee S, Park W, Kahng Y H and Lee T 2012, Nanotechnology 23 112001

    Article  Google Scholar 

  6. Li Q, Guo B, Yu J, Ran J, Zhang B and Yan H 2011, J. Am. Chem. Soc. 133 10878

    Article  Google Scholar 

  7. Qian W, Hao R, Zhou J, Eastman M, Manhat B A, Sun Q, Goforth A M and Jiao J 2013, Carbon 52 595

    Article  Google Scholar 

  8. Yang J and Gunasekaran S 2013, Carbon 51 36

    Article  Google Scholar 

  9. Shao Y, Wang J, Wu H, Liu J and Aksay I A 2010, Electroanalysis 22 1027

    Article  Google Scholar 

  10. Liu F, Piao Y, Choi K and Seo T S 2012, Carbon 50 123

    Article  Google Scholar 

  11. Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008, Science 320 356

    Article  Google Scholar 

  12. Geim A K and Novoselov K S 2007, Nat. Mater. 6 183

    Article  Google Scholar 

  13. Wintterlin J and Bocquet M L 2009, Surf. Sci. 603 1841

    Article  Google Scholar 

  14. Eizenberg M and Blakely J M 1979, Surf. Sci. 82 228

    Article  Google Scholar 

  15. Gilje S, Han S, Wang M, Kang K L and Kaner R B 2007, Nano Lett. 7 3394

    Article  Google Scholar 

  16. Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M and Kern K 2007, Nano Lett. 7 3499

    Article  Google Scholar 

  17. Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A and Aksay I A 2006, J. Phys. Chem. B 110 8535

    Article  Google Scholar 

  18. Niyogi S, Bekyarova E, Itikis M E, McWilliams J L, Hammon M A and Haddon R C 2006, J. Am. Chem. Soc. 128 7720

    Article  Google Scholar 

  19. Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T and Ruoff R S 2006, J. Mater. Chem. 16 155

    Article  Google Scholar 

  20. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007, Carbon 45 1558

    Article  Google Scholar 

  21. Si Y and Samulski E T 2008, Nano Lett. 8 1679

    Article  Google Scholar 

  22. Wang G, Yang J, Park J, Gou X, Wang B, Liu H and Yao J 2008, J. Phys. Chem. C 12 8192

    Article  Google Scholar 

  23. Henglein A and Meisel D 1998, Langmuir 14 7392

    Article  Google Scholar 

  24. Rao V M, Castano C H, Rojas J and Abdulghani A J 2013, Radiat. Phys. Chem. 84 39

    Article  Google Scholar 

  25. Rojas J V and Castano C H 2012, Radiat. Phys. Chem. 81 16

    Article  Google Scholar 

  26. Casaos A A, Puértolas J A, Pascual F J, Hernández-Ferrer J, Castell P, Benito A M, Maser W K and Martínez M T 2014, Appl. Surf. Sci. 301 264

    Article  Google Scholar 

  27. Safibonaba B, Reyhanib A, Nozad Golikandb A, Mortazavib S Z, Mirershadib S and Ghorannevissa M 2011, Appl. Surf. Sci. 258 766

    Article  Google Scholar 

  28. Zhang B, Li L, Wang Z, Xie S, Zhang Y, Shen Y, Yu M, Deng B, Huang Q, Fan C and Li J 2012, J. Mater. Chem. 22 7775

    Article  Google Scholar 

  29. Zhang Y, Ma H, Zhang Q, Peng J, Li J, Zha M and Yu Z 2012, J. Mater. Chem. 22 13064

    Article  Google Scholar 

  30. Remita H, Lampre I, Mostafavi M, Balanzat E and Bouffard S 2005, Radiat. Phys. Chem. 72 575

    Article  Google Scholar 

  31. Krishnamoorthy K, Mohan R and Kim S J 2011, Appl. Phys. Lett. 98 244101

    Article  Google Scholar 

  32. Xu S., Yong L and Wu P 2013, ACS Appl. Mater. Interfaces 5 654

    Article  Google Scholar 

  33. Vasu K S, Chakraborty B, Sampath S and Sood A K 2010, Solid State Commun. 150 1295

    Article  Google Scholar 

  34. Qian W, Chen J, Wei L, Wu L and Chen Q A 2009, Nano 4 7

    Article  Google Scholar 

  35. Alam M S, Rao B S M and Janata E 2003, Radiat. Phys. Chem. 67 723

    Article  Google Scholar 

  36. Alam M S, Rao B S M and Janata E 2001, Phys. Chem. Chem. Phys. 3 2622

    Article  Google Scholar 

  37. Belloni J, Mostafavi M, Remita H, Marignier J L and Delcourt M O 1998, N. J. Chem. 22 1239

    Article  Google Scholar 

  38. Janata E 2002, Indian Acad. Sci. 114 731

    Article  Google Scholar 

  39. Guo H, Wang X, Qian Q, Wang F and Xia X 2009, ACS Nano 3 2653

    Article  Google Scholar 

  40. Shang J, Ma L, Li J, Ai W, Yu T and Gurzadyan G G 2012, Sci. Rep. 2 792

    Article  Google Scholar 

  41. Sheng Y, Tang X, Peng E and Xue J 2013, J. Mater. Chem. B 1 512

    Article  Google Scholar 

  42. Zhang L, Liang J, Huang Y, Ma Y, Wang Y and Chen Y 2009, Carbon 47 3365

    Article  Google Scholar 

  43. Hun Huh S 2011 Physics and applications of graphene – experiments, Mikhailov S (ed) Thermal reduction of graphene oxide (InTech) ISBN: 978-953-307-217-3

  44. Saner S, Okyay F and Yürüm Y 2011, Fuel 90 2609

    Article  Google Scholar 

  45. Sakika B K, Boruah R K and Gogo P K 2007, J. Chem. Sci. 121 103

    Article  Google Scholar 

  46. Dong X, Li B, Wei A, Cao X, Chan-Park M B, Zhang H, Li L J, Huang W and Chen P 2011, Carbon 49 2944

    Article  Google Scholar 

  47. Dong X, Xing G, Chan-Park M B, Shi W, Xiao N, Wang J, Yan Q, Sum T C, Huang W and Chen P 2011, Carbon 49 5071

    Article  Google Scholar 

  48. Lin W J, Liao C S, Jhang J H and Tsai Y C 2009, Electrochem. Commun. 11 2153

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial supports provided by Department of Chemistry, University of Pune. CNQS, Department of Physics, University of Pune, for XRD, SEM, FTIR facilities, Prof Pavankumar, IISER, Pune, for Raman spectra and Prof Hedayatollah Ghourchian, University of Tehran, are gratefully appreciated for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANJALI A ATHAWALE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHAHRIARY, L., ATHAWALE, A.A. Synthesis of graphene using gamma radiations. Bull Mater Sci 38, 739–745 (2015). https://doi.org/10.1007/s12034-015-0889-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0889-9

Keywords

Navigation