Skip to main content
Log in

Processing of water-based LiNi1/3Mn1/3Co1/3O2 pastes for manufacturing lithium ion battery cathodes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In order to meet the demand for more ecological and economic fabrication of lithium ion (Li-ion) batteries, water is considered as an alternative solvent for electrode paste preparation. In this study, we report on the feasibility of water-based processing of LiNi 1/3 Mn 1/3 Co 1/3 O 2 -based pastes for manufacturing cathode electrodes. The influence of the total solid content, the amount of conductive agent and binder materials on paste rheology and the final electrode properties was investigated. Suitable paste formulations which enable favourable paste flow behaviour, appropriate electrode properties and good electrochemical performance have been found. Results show that a substitution of the conventional organic solvent-based manufacturing route for LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathodes by water-based processing exhibits a promising way to realise Li-ion batteries with comparable electrochemical behaviour, while avoiding toxic processing aids and reducing overall manufacturing costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. #Based on NMC weight.

References

  • Bauer W and Nötzel D 2013 Ceram. Int. 40 4591

  • Böckenfeld N, Kühnel R S, Passerini S, Winter M and Balducci A 2011 J. Power Sources 196 4136

  • Buqa H, Holzapfel M, Krumeich F, Veit C and Novák P 2006 J. Power Sources 161 617

  • Cai Z P, Liang Y, Li W S, Xing L D and Liao Y H 2009 J. Power Sources 189 547

  • DIN 4768 1990 Determination of surface roughness values of the parameters R a , R z , \(R_{\max }\) by means of electrical contact (stylus) instruments Berlin Beuth 295

  • Drofenik J, Gaberscek M, Dominko R, Poulsen F W, Mogensen M, Pejovnik S and Jamnik J 2003 Electrochim. Acta 48 883

  • Fergus J W 2010 J. Power Sources 195 939

  • Guerfi A, Kaneko M, Petitclerc M, Mori M and Zaghib K 2007 J. Power Sources 163 1047

  • Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C and Winter M 2008 Electrochem. Solid State Lett. 11 A76

  • Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N and Beneveti D 2012 J. Mater. Chem. 22 3227

  • Kim J, Hong Y, Ryu K S, Kim M G and Cho J 2006 Electrochem. Solid State Lett. 9 A19

  • Lee J H, Lee S, Paik U and Choi Y M 2005a J. Power Sources 147 249

  • Lee J H, Paik U, Hackley V A and Choi Y M 2005b J. Electrochem. Soc. 152 A1763

  • Lee J H, Paik U, Hackley V A and Choi Y M 2006 J. Power Sources 161 612

  • Lee J T, Chu Y J, Peng X W, Wang F M, Yang C R and Li C C 2007 J. Power Sources 173 985

  • Lee J H, Kim J S, Kim Y C, Zang D S and Paik U 2008 Ultramicroscopy 108 1256

  • Lewis J A 2000 J. Am. Ceram. Soc. 2341 83

  • Li C C, Lee J T, Lo C Y and Wu M S 2005 Electrochem. Solid State Lett. 8 A509

  • Li C C, Lee J T and Peng X W 2006 J. Electrochem. Soc. 153 A809

  • Li C C, Lee J T, Tung Y L and Yang C R 2007 J. Mater. Sci. 42 5773

  • Li C C and Lin Y S 2012 J. Power Sources 220 413

  • Li C C and Wang Y W 2013 J. Power Sources 227 204

  • Li J, Daniel C and Wood D 2011a J. Power Sources 196 2452

  • Li J, Klöpsch R, Nowak S, Kunze M, Winter M and Passerini S 2011b J. Power Sources 196 7687

  • Li J, Armstrong B L, Kiggans J, Daniel C and Wood D L III 2012 Langmuir 28 3783

  • Li J, Armstrong B L, Kiggans J, Daniel C and Wood D L III 2013 J. Electrochem. Soc. 160 A201

  • Liu W R, Yang M H, Wu H C, Chiao S M and Wu N L 2005 Electrochem. Solid State Lett 8 A100

  • Lux S F, Schappacher F, Balducci A, Passerini S and Winter M 2010 J. Electrochem. Soc 157 A320

  • Mulder G, Omar N, Pauwels S, Meeus M, Leemans F, Verbrugge B, De Nijs W, Van den Bossche P, Six D and Mierlo J V 2013 Electrochim. Acta 87 473

  • Muthu J and Battaglini J 2009 Battery Power 13 12

  • Orlenius J, Lyckfeldt O, Kasvoyee K A and Johander P 2012 J. Power Sources 213 119

  • Porcher W, Lestriez B, Jouanneau S and Guyomard D 2009 J. Electrochem. Soc. 156, A133

  • Spahr M E, Goers D, Leone A, Stallone S and Grivei E 2011 J. Power Sources 196 3404

  • Xu J, Chou S L, Gu Q F, Liu H K and Dou S X 2013 J. Power Sources 225 172

  • Zhang X, Jiang W J, Zhu X P, Mauger A, Qilu and Julien C M 2011 J. Power Sources 196 5102

  • Zheng H, Li T, Liu G, Song X and Battaglia V S 2012 J. Power Sources 208 52

Download references

Acknowledgements

The authors wish to thank C Brösicke and D Nötzel for their support in pouch cell manufacturing and characterisation. The supply of binder materials by Dow Wolff Cellulosic and JSR Corporation is gratefully acknowledged. Financial support by the Helmholtz Association of German Research Centres is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FATIH A ÇETINEL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ÇETINEL, F.A., BAUER, W. Processing of water-based LiNi1/3Mn1/3Co1/3O2 pastes for manufacturing lithium ion battery cathodes. Bull Mater Sci 37, 1685–1690 (2014). https://doi.org/10.1007/s12034-014-0733-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0733-7

Keywords

Navigation