Skip to main content
Log in

Studies on interfacial interactions of TiO2 nanoparticles with bacterial cells under light and dark conditions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The probable underlying mechanism(s) of bacterial cell–TiO2 nanoparticles (TiO2 NPs) interaction in the absence of photo-irradiation has been less studied since most of the prior cytotoxicity studies focused on irradiated TiO2. The present study draws attention to the possible role of cell surface–TiO2 NP interactions under dark conditions, through an array of spectroscopic and microscopic investigations. A dominant freshwater bacterial isolate, Bacillus licheniformis, which interacted with environmentally relevant concentrations of TiO2 NPs (1 μg/mL), was analysed and compared under both light and dark conditions. Aggregation of cells upon NP interaction and adsorption of NPs onto the cell membrane was evident from the scanning electron micrographs under both light and dark conditions. The FT–IR and FT–Raman spectra suggested stress response of bacterial cells by elevated protein and polysaccharide content in the cell–NP interaction. The Xray photoelectron spectroscopic data substantiated the reduction of titanium from Ti(IV) to Ti(III) species which might have contributed to the redox interactions on the cell surface under light as well as dark conditions. The internalization of NPs in the cytoplasm were obvious from the transmission electron micrographs. The consequent cell death/damage was confirmed through fluorescence spectroscopy and microscopy. To conclude, the current study established the substantial role of interfacial interactions in cytotoxicity of the TiO2 NPs irrespective of the irradiation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, L.K., D.Y. Lyon, and P.J. Alvarez. 2006. Water Res. 40: 3527.

    Article  Google Scholar 

  • Aruguete, D.M., and M.F. Hochella Jr. 2010. Environ. Chem. 7: 3.

    Article  Google Scholar 

  • Auffan, M., J. Rose, M.R. Wiesner, and J.Y. Bottero. 2009. Environ. Pollut. 157: 1127.

    Article  Google Scholar 

  • Battin, T.J., F.V.D. Kammer, A. Weilhartner, O. Ottofuelling, and T. Hofmann. 2009. Environ. Sci. Technol. 43: 8098.

    Article  Google Scholar 

  • Beletsky, I.P., and S.R. Umansky. 1999. J. Immunol. Meth. 134: 201.

    Article  Google Scholar 

  • Beveridge T J, Forsberg C W and Doyle R J 1982 J. Bacteriol. 1438

  • Biesinger, M.C., W.M. Lau, A.R. Gerson, and R.C. Smart. 2010. Appl. Surf. Sci. 257: 887.

    Article  Google Scholar 

  • Burello, E., and A.P. Worth. 2011. Nanotoxicol. 5: 228.

    Article  Google Scholar 

  • Dalai, S., S. Pakrashi, R.S. Suresh, N. Chandrasekaran, and A. Mukherjee. 2012. Tox. Res. 1: 116.

    Article  Google Scholar 

  • De Gelder, J., K. De Gussem, P. Vandenabeele, and L. Moens. 2007. J. Raman Spectrosc. 38: 1133.

    Article  Google Scholar 

  • Fang, X., R. Yu, B. Li, P. Somasundaran, and K. Chandran. 2010. J. Coll. Interf. Sci. 348: 329.

    Article  Google Scholar 

  • Fenoglio, I., G. Greco, S. Livraghi, and B. Fubini. 2009. Chem. Eur. J. 15: 4614.

    Article  Google Scholar 

  • Fernández-García M and Rodriguez J A 2011 Metal Oxide Nanoparticles. Encyclopedia Inorganic Bioinorganic Chemistry (DOI: 10.1002/978119951438.eibc0331)

  • Forsberg, C.W., P.B. Wyrick, J.B. Ward, and H.J. Rogers. 1973. J. Bacteriol. 113: 969.

    Google Scholar 

  • Francolini, I., P. Norris, A. Piozzi, G. Donelli, and P. Stoodley. 2004. Antimicrob. Agents Chemother. 48: 4360.

    Article  Google Scholar 

  • Fujishima, A., T.N. Rao, and D.A. Tryk. 2000. J. Photochem. Photobiol. C1: 1.

    Article  Google Scholar 

  • Garcia-Gonzalez, L., A.H. Geeraerd, J. Mast, Y. Briers, K. Elst, L. Van Ginneken, J.F. Van Impe, and F. Devlieghere. 2010. Food Microbiol. 27: 540.

    Article  Google Scholar 

  • Guieros-Filho F J 2007 Bacillus subtilis: Cellular and molecular biology (ed.) Peter Graumann (Germany: Horizon Scientific Press) pp 93–134

  • Hecker, M., and U. Völker. 2001. Adv. Microb. Physiol. 44: 35.

    Article  Google Scholar 

  • Jiang, G., Z. Shen, J. Niu, Y. Bao, J. Chen, and T. He. 2011. J. Environ. Monit. 13: 42.

    Article  Google Scholar 

  • Kumar, A., A.K. Pandey, S.S. Singh, R. Shanker, and A. Dhawan. 2011. Free Radical Biol. Med. 51: 1872.

    Article  Google Scholar 

  • Kungang, Li., W. Zhang, and Y. Chen. 2013. Biotechnol. J. 8.

  • Liang, Y., S. Gan, S.A. Chambers, and E.I. Altman. 2001. Phys. Rev. B63: 235402.

    Article  Google Scholar 

  • Lipovsky, A., L. Ievitski, Z. Tzitrinovich, A. Gedanken, and R. Lubart. 2012. Photochem. Photobiol. 88: 14.

    Article  Google Scholar 

  • Liu, Z., S. Yang, Y. Bai, J. Xiu, H. Yan, J. Huang, L. Wang, H. Zhang, and Y. Liu. 2011. Miner. Eng. 24: 839.

    Article  Google Scholar 

  • Maquelin, K., C. Kirschner, L.P. Choo-Smith, N. van den Braak, H.P. Endtz, D. Naumann, and G.J. Puppels. 2002. J. Microbiol. Meth. 51: 255.

    Article  Google Scholar 

  • Meng, X., M. Dadachov, G.P. Korfiatis, and C. Christodoulatos. 2005. US Patent Application Number 6: 919,029.

    Google Scholar 

  • Nakamoto, K. 1963. Infrared spectra of inorganic and coordination compounds, 107. New York: John Wiley and Sons.

    Google Scholar 

  • Neal, A.L. 2008. Ecotoxicology 17: 362.

    Article  Google Scholar 

  • Nel A E, Madler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Kaelssig F, Castranova V and Thompson M 2009 Nat. Mater. 543

  • O’Brien, N., and E. Cummins. 2010. J. Environ. Sci. Health, Part A 45: 992.

    Article  Google Scholar 

  • Pakrashi, S., S. Dalai, D. Sabat, S. Singh, N. Chandrasekaran, and A. Mukherjee. 2011. Chem. Res. Toxicol. 24: 1899.

    Article  Google Scholar 

  • Pandey, R.R., K.K. Saini, and M. Dhayal. 2010. J. Biosens. Bioelectron. 1: 101.

    Google Scholar 

  • Pena, M.E., G.P. Korfiatis, M. Patel, L. Lippincott, and X. Meng. 2005. Water Res. 39: 2327.

    Article  Google Scholar 

  • Rtimi, S., O. Baghriche, C. Pulgarin, R. Sanjines, and J. Kiwi. 2012. RSC Adv. 2: 8591.

    Article  Google Scholar 

  • Sadiq, I.M. 2011. Ecotoxicological studies of engineered oxide nanoparticles. Vellore: Ph D Thesis, VIT University.

    Google Scholar 

  • Samuel, J., M.L. Paul, P. Mrudula, M. Joyce Nirmala, N. Chandrasekaran, and A. Mukherjee. 2012. Ind. Eng. Chem. Res. 51: 3740.

    Article  Google Scholar 

  • Sayes, C.M., R. Wahi, P.A. Kurian, Y. Liu, J.L. West, K.D. Ausman, D.B. Warheit, and V.L. Colvin. 2006. Toxicol. Sci. 92: 174.

    Article  Google Scholar 

  • Schuster, K.C., E. Urlaub, and J.R. Gapes. 2000. J. Microbiol. Meth. 42: 29.

    Article  Google Scholar 

  • Wang, H., and J.A. Joseph. 1999. Free Radical Biol. Med. 27: 612.

    Article  Google Scholar 

  • Wang, T., J. Bai, X. Jiang, and G.U. Nienhaus. 2012. ACS Nano. 6: 1251.

    Article  Google Scholar 

  • Zhang, H., et al. 2012. ACS Nano. 6: 4349.

    Article  Google Scholar 

  • Zhu, X., J. Wang, X. Zhang, Y. Chang, and Y. Chen. 2010. Chemosphere 79: 928.

    Article  Google Scholar 

  • Zhukova, L.V., J.V. Kiwi, and V. Nikandrov. 2010. Dokl. Chem. 435: 279.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 97.4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalai, S., Pakrashi, S., Chakravarty, S. et al. Studies on interfacial interactions of TiO2 nanoparticles with bacterial cells under light and dark conditions. Bull Mater Sci 37, 371–381 (2014). https://doi.org/10.1007/s12034-014-0680-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0680-3

Keywords

Navigation