Skip to main content
Log in

A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The present study focused on the different acute toxicity of TiO2 nanoparticles(TiO2 NPs) towards the bacteria in suspension culture and adherent culture under the dark conditions. The study investigated the bacteria toxicity with TiO2 NPs at different concentrations(1—2000 mg/L), sizes(10 nm, 35 nm) and specific surface areas in unit volume solution(0—224 m2/L) characterized by the cell viability, extracellular polymeric substances(EPS) release and biofilm formation. The bacteria in adherent culture was found to be more resistant against the toxicity of TiO2 NPs compared to that in suspension culture. An NP dose and surface area dependent(rather than the size) bacterial viability was observed in suspension culture, specifically the surface area positively correlated with the toxicity of TiO2 NPs. The size of TiO2 NPs, however, played a more critical role in toxicity of TiO2 NPs in adherent culture. Therefore, the surface area dependent toxicity of TiO2 NPs is a comprehensive parameter describing the dose and size dependent toxicity of TiO2 NPs. The electron microscopic(SEM, TEM, EDX) observations suggested the EPS release and biofilm formation, during aggregation of TiO2 NPs on the bacteria after 12 h cultivation in adherent culture under the dark condition. A possible toxic mechanism could be that “effective surface areas” that directly contact with the bacterial membrane greatly contributed to the toxicity of TiO2 NPs in both suspension culture and adherent culture. Therefore, as for the possible resistance mechanism, EPS secretion and subsequent biofilm formation may protect the bacteria against the toxicity of TiO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowack B., Baalousha M., Bornhöft N., Chaudhry Q., Cornelis G., Cotteril J., Gondikas A., Hasselloev M., Lead J. R., Mitrano D. M., Environmental Science Nano, 2015, 2(5), 421

    Article  CAS  Google Scholar 

  2. Gottschalk F., Sonderer T., Scholz R. W., Nowack B., Environmental Science & Technology, 2009, 43(24), 9216

    Article  CAS  Google Scholar 

  3. Ji Z., Jin X., George S., Xia T., Meng H., Wang X., Suarez E., Zhang H., Hoek E. M. V., Godwin H., Environmental Science & Technology, 2010, 44(19), 7309

    Article  CAS  Google Scholar 

  4. Li Y. Q., Xiao R., Liu Z. L., Liang X. J., Feng W., Chem. Res. Chi-nese Universities, 2017, 33(1), 107

    Article  Google Scholar 

  5. Westerhoff P., Song G., Hristovski K., Kiser M. A., Journal of Envi-ronmental Monitoring, 2011, 13(5), 1195

    Article  CAS  Google Scholar 

  6. Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N., Environmental Science & Technology, 2012, 46(4), 2242

    Article  CAS  Google Scholar 

  7. Shih T. T., Lin C. H., Hsu I. H., Chen J. Y., Sun Y. C., Analytical Chemistry, 2013, 85(21), 10091

    Article  CAS  Google Scholar 

  8. Peters R. J., Van B. G., Herrerarivera Z., Helsper H. P., Marvin H. J., Weigel S., Tromp P. C., Oomen A. G., Rietveld A. G., Bouwmeester H., Journal of Agricultural & Food Chemistry, 2014, 62(27), 6285

    Article  CAS  Google Scholar 

  9. Cai L. J., Li J. B., Wang S. P., Zhao M. Z., Zhao B., Jiang C. L., Kong W., Chem. Res. Chinese Universities, 2017, 33(2), 294

    Article  CAS  Google Scholar 

  10. Keller A. A., Lazareva A., Environ. Sci. Technol. Lett., 2013, 1(1), 65

    Article  Google Scholar 

  11. Gondikas A. P., Von d. K. F., Reed R. B., Wagner S., Ranville J. F., Hofmann T., Environmental Science & Technology, 2014, 48(10), 5415

    Article  CAS  Google Scholar 

  12. Vale G., Mehennaoui K., Cambier S., Libralato G., Jomini S., Do-mingos R. F., Aquatic Toxicology, 2016, 170(4), 162

    Article  CAS  Google Scholar 

  13. Djurišic A. B., Leung Y. H., Ng A. M., Xu X. Y., Lee P. K., Degger N., Wu R. S., Small, 2015, 11(1), 26

    Article  Google Scholar 

  14. Gottschalk F., Sun T., Nowack B., Environ. Poll., 2013, 181, 287

    Article  CAS  Google Scholar 

  15. Gu Y., Qiao X., Zhang J., Sun Y. Y., Tao Y. M., Qiao S. X., Chem. Res. Chinese Universities, 2016, 32(3), 474

    Article  CAS  Google Scholar 

  16. Landsiedel R., Lan M. H., Kroll A., Hahn D., Schnekenburger J., Wiench K., Wohlleben W., Adv. Mater., 2010, 22(24), 2601

    Article  CAS  Google Scholar 

  17. Farkas J., Peter H., Ciesielski T. M., Thomas K. V., Sommaruga R., Salvenmoser W., Weyhenmeyer G. A., Tranvik L. J., Jenssen B. M., Science of the Total Environment, 2015, 535, 85

    Article  CAS  Google Scholar 

  18. Toyofuku M., Inaba T., Kiyokawa T., Obana N., Yawata Y., Nomura N., Bioscience Biotechnology & Biochemistry, 2015, 80(1), 1

    Google Scholar 

  19. Mathur A., Kumari J., Parashar A., Lavanya T., Chandrasekaran N., Mukherjee A., PLoS One, 2015, 10(10), 329

    Google Scholar 

  20. Zhukova L. V., ACS Applied Materials & Interfaces, 2015, 7(49), 27197

    Article  CAS  Google Scholar 

  21. Sangshetti J. N., Dharmadhikari P. P., Chouthe R. S., Fatema B., Lad V., Karande V., Darandale S. N., Shinde D. B., Cheminform, 2013, 23(7), 2250

    CAS  Google Scholar 

  22. Josko I., Oleszczuk P., Skwarek E., Journal of Soils and Sediments, 2016, 16(6), 1798

    Article  CAS  Google Scholar 

  23. George S., Gardner H., Seng E. K., Chang H., Wang C., Fang C. H. Y., Richards M., Valiyaveettil S., Chan W. K., Environmental Science & Technology, 2014, 48(11), 6374

    Article  CAS  Google Scholar 

  24. Zhu M., Wang H., Keller A. A., Wang T., Li F., Science of the Total Environment, 2014, 487C(14), 375

    Article  Google Scholar 

  25. Li D., Cui F., Zhao Z., Liu D., Xu Y., Li H., Yang X., Biodegradation, 2014, 25(2), 167

    Article  Google Scholar 

  26. Tong T., Wilke C. M., Wu J., Binh C. T., Kelly J. J., Gaillard J. F., Gray K. A., Environmental Science & Technology, 2015, 49(13), 8113

    Article  CAS  Google Scholar 

  27. Tong T., Shereef A., Wu J., Binh C. T., Kelly J. J., Gaillard J. F., Gray K. A., Environmental Science & Technology, 2013, 47(21), 12486

    Article  CAS  Google Scholar 

  28. Raftery T. D., Lindler H., Mcnealy T. L., Microbial Ecology, 2013, 65(2), 496

    Article  CAS  Google Scholar 

  29. Li Y., Niu J., Zhang W., Zhang L., Shang E., Langmuir, 2014, 30(10), 2852

    Article  CAS  Google Scholar 

  30. Rodrigues D. F., Elimelech M., Environmental Science & Technology, 2010, 44(12), 4583

    Article  CAS  Google Scholar 

  31. Helt C. D., Weber K. P., Legge R. L., Slawson R. M., Ecological En-gineering, 2012, 39(7), 113

    Article  Google Scholar 

  32. Kumari J., Kumar D., Mathur A., Naseer A., Kumar R. R., Thanjavur C. P., Chaudhuri G., Pulimi M., Raichur A. M., Babu S., Environ-mental Research, 2014, 135, 333

    Article  CAS  Google Scholar 

  33. Fu P. P., Xia Q., Hwang H. M., Ray P. C., Yu H., Journal of Food & Drug Analysis, 2014, 22(1), 64

    Article  CAS  Google Scholar 

  34. Osborne O. J., Lin S., Chang C. H., Ji Z., Yu X., Wang X., Lin S., Xia T., Nel A. E., ACS Nano, 2015, 9(10), 9573

    Article  CAS  Google Scholar 

  35. Xiong S., George S., Yu H., Damoiseaux R., France B., Ng K. W., Loo S. C., Archives of Toxicology, 2013, 87(6), 1075

    Article  CAS  Google Scholar 

  36. Schug H., Isaacson C. W., Sigg L., Ammann A. A., Schirmer K., En-vironmental Science & Technology, 2014, 48(19), 11620

    Article  CAS  Google Scholar 

  37. Long T. E., Keding L. C., Lewis D. D., Anstead M. I., Withers T. R., Yu H. D., Bioorganic & Medicinal Chemistry Letters, 2016, 26(4), 1305

    Article  CAS  Google Scholar 

  38. You G., Hou J., Xu Y., Wang C., Wang P., Miao L., Ao Y., Li Y., Lv B., Bioresource Technology, 2015, 194, 91

    Article  CAS  Google Scholar 

  39. Miao L., Wang C., Hou J., Wang P., Ao Y., Li Y., Yao Y., Lv B., Yang Y., You G., Science of the Total Environment, 2016, 579, 588

    Article  Google Scholar 

  40. Adam V., Loyauxlawniczak S., Quaranta G., Environmental Science and Pollution Research, 2015, 22(15), 11175

    Article  CAS  Google Scholar 

  41. Dalai S., Pakrashi S., Kumar R. S. S., Chandrasekaran N., Mukherjee A., Toxicol. Res., 2012, 1(2), 116

    Article  CAS  Google Scholar 

  42. Lipovsky A., Levitski L., Tzitrinovich Z., Gedanken A., Lubart R., Photochemistry & Photobiology, 2012, 88(1), 14

    Article  CAS  Google Scholar 

  43. Nesic J., Rtimi S., Laub D., Roglic G. M., Pulgarin C., Kiwi J., Col-loids & Surfaces B Biointerfaces, 2014, 123, 593

    Article  CAS  Google Scholar 

  44. Cho E. J., Holback H., Liu K. C., Abouelmagd S. A., Park J., Yeo Y., Molecular Pharmaceutics, 2013, 10(6), 2093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences for the help in the TEM/SEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Liu.

Additional information

Supported by the National Natural Science Foundation of China(No.21404047).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, M., Leng, S. et al. A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition. Chem. Res. Chin. Univ. 34, 44–50 (2018). https://doi.org/10.1007/s40242-018-7193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7193-3

Keywords

Navigation