Skip to main content

Advertisement

Log in

Landscape of Clinically Relevant Exosomal tRNA-Derived Non-coding RNAs

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Exosomes are extra-cellular vesicles that are < 150 nm that is formed by invagination of the plasma membrane and are released as vesicles. These contain proteins, RNA, and DNA as their cargo. In recent times, the non-coding RNA (ncRNA) present within exosomes has been studied extensively in the context of sorting, localization, and their potential as biomarkers. For example, miR-1246, miR-1290, miR-21, and miR-23a are exosomal biomarkers of cancer, and YBX1 (Y-Box Binding Protein 1) is attributed to exosomal RNA sorting. Transfer RNA-derived fragments are a class of small ncRNAs that were discovered in 2009. They are classified as tRFs (tRNA-derived fragments) and tsRNAs (tRNA halves). Interestingly, these tRNA-derived ncRNAs are emerging as biomarkers in various diseases, and these are found in exosomes. To date, the literature has covered only the biomarker potential of plasma/serum tRNA-derived ncRNAs. Hence, in the current review, we discuss the exosomal tRNA-derived fragments that are clinically relevant in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Abbreviations

ncRNA:

Non-coding RNA

tRFs:

tRNA-derived fragments

tsRNAs:

tRNA halves

YBX1:

Y box-binding protein 1

CKD:

Chronic kidney disease

SE:

Seminal exosomes

SONFH:

Steroid-induced osteonecrosis of the femoral head

AD:

Atopic dermatitis

References

  1. Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. (2019). Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. https://doi.org/10.3390/cells8040307

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x

    Article  CAS  PubMed  Google Scholar 

  3. Doyle, L. M., & Wang, M. Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. https://doi.org/10.3390/cells8070727

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., & David, G. (2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature Cell Biology, 14, 677–685. https://doi.org/10.1038/ncb2502

    Article  CAS  PubMed  Google Scholar 

  5. Gruenberg, J., & van der Goot, F. G. (2006). Mechanisms of pathogen entry through the endosomal compartments. Nature Reviews Molecular Cell Biology, 7, 495–504. https://doi.org/10.1038/nrm1959

    Article  CAS  PubMed  Google Scholar 

  6. Henne, W. M., Stenmark, H., & Emr, S. D. (2013). Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harbor Perspectives in Biology. https://doi.org/10.1101/cshperspect.a016766

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C. F., Schauer, K., Hume, A. N., Freitas, R. P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M., Desnos, C., Seabra, M. C., Darchen, F., Amigorena, S., Moita, L. F., & Thery, C. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12, 19–30; sup pp 1–13. https://doi.org/10.1038/ncb2000

  8. Razi, M., & Futter, C. E. (2006). Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Molecular Biology of the Cell, 17, 3469–3483. https://doi.org/10.1091/mbc.e05-11-1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joyce, D. P., Kerin, M. J., & Dwyer, R. M. (2016). Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. International Journal of Cancer, 139, 1443–1448. https://doi.org/10.1002/ijc.30179

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. (2015). Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13, 17–24. https://doi.org/10.1016/j.gpb.2015.02.001

    Article  CAS  Google Scholar 

  11. Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J., & Ratajczak, M. Z. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113, 752–760. https://doi.org/10.1002/ijc.20657

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, L., Sun, H. T., Wang, S., Huang, S. L., Zheng, Y., Wang, C. Q., Hu, B. Y., Qin, W., Zou, T. T., Fu, Y., Shen, X. T., Zhu, W. W., Geng, Y., Lu, L., Jia, H. L., Qin, L. X., & Dong, Q. Z. (2020). Isolation and characterization of exosomes for cancer research. Journal of Hematology & Oncology, 13, 152. https://doi.org/10.1186/s13045-020-00987-y

    Article  CAS  Google Scholar 

  13. Greening, D. W., Xu, R., Ji, H., Tauro, B. J., & Simpson, R. J. (2015). A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods in Molecular Biology, 1295, 179–209. https://doi.org/10.1007/978-1-4939-2550-6_15

    Article  CAS  PubMed  Google Scholar 

  14. Caradec, J., Kharmate, G., Hosseini-Beheshti, E., Adomat, H., Gleave, M., & Guns, E. (2014). Reproducibility and efficiency of serum-derived exosome extraction methods. Clinical Biochemistry, 47, 1286–1292. https://doi.org/10.1016/j.clinbiochem.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  15. Oksvold, M. P., Neurauter, A., & Pedersen, K. W. (2015). Magnetic bead-based isolation of exosomes. Methods in Molecular Biology, 1218, 465–481. https://doi.org/10.1007/978-1-4939-1538-5_27

    Article  CAS  PubMed  Google Scholar 

  16. Weng, Y., Sui, Z., Shan, Y., Hu, Y., Chen, Y., Zhang, L., & Zhang, Y. (2016). Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. The Analyst, 141, 4640–4646. https://doi.org/10.1039/c6an00892e

    Article  CAS  PubMed  Google Scholar 

  17. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., & Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A, 108, 5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tabet, F., Vickers, K. C., Cuesta Torres, L. F., Wiese, C. B., Shoucri, B. M., Lambert, G., Catherinet, C., Prado-Lourenco, L., Levin, M. G., Thacker, S., Sethupathy, P., Barter, P. J., Remaley, A. T., & Rye, K. A. (2014). HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nature Communications, 5, 3292. https://doi.org/10.1038/ncomms4292

    Article  CAS  PubMed  Google Scholar 

  19. Melo, S. A., Sugimoto, H., O’Connell, J. T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L. T., Melo, C. A., Lucci, A., Ivan, C., Calin, G. A., & Kalluri, R. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26, 707–721. https://doi.org/10.1016/j.ccell.2014.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., & Croce, C. M. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A, 109, E2110–E2116. https://doi.org/10.1073/pnas.1209414109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ogata-Kawata, H., Izumiya, M., Kurioka, D., Honma, Y., Yamada, Y., Furuta, K., Gunji, T., Ohta, H., Okamoto, H., Sonoda, H., Watanabe, M., Nakagama, H., Yokota, J., Kohno, T., & Tsuchiya, N. (2014). Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS ONE, 9, e92921. https://doi.org/10.1371/journal.pone.0092921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, J. M., Ju, B. H., Pan, C. J., Gu, Y., Li, M. Q., Sun, L., Xu, Y. Y., & Yin, L. R. (2017). MiR-214 inhibits cell migration, invasion and promotes the drug sensitivity in human cervical cancer by targeting FOXM1. Am J Transl Res, 9, 3541–3557.

    PubMed  PubMed Central  Google Scholar 

  23. Honda, S., Kawamura, T., Loher, P., Morichika, K., Rigoutsos, I., & Kirino, Y. (2017). The biogenesis pathway of tRNA-derived piRNAs in Bombyx germ cells. Nucleic Acids Research, 45, 9108–9120. https://doi.org/10.1093/nar/gkx537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun, C., Fu, Z., Wang, S., Li, J., Li, Y., Zhang, Y., Yang, F., Chu, J., Wu, H., Huang, X., Li, W., & Yin, Y. (2018). Roles of tRNA-derived fragments in human cancers. Cancer Letters, 414, 16–25. https://doi.org/10.1016/j.canlet.2017.10.031

    Article  CAS  PubMed  Google Scholar 

  25. Goodarzi, H., Liu, X., Nguyen, H. C., Zhang, S., Fish, L., & Tavazoie, S. F. (2015). Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 161, 790–802. https://doi.org/10.1016/j.cell.2015.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuscu, C., Kumar, P., Kiran, M., Su, Z., Malik, A., & Dutta, A. (2018). tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA, 24, 1093–1105. https://doi.org/10.1261/rna.066126.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan, L., Karaiskos, S., & Grigoriev, A. (2020). Inferring targeting modes of Argonaute-loaded tRNA fragments. RNA Biology, 17, 1070–1080. https://doi.org/10.1080/15476286.2019.1676633

    Article  CAS  PubMed  Google Scholar 

  28. Choi, E. J., Ren, J., Zhang, K., Wu, W., Lee, Y. S., Lee, I., & Bao, X. (2020). The importance of AGO 1 and 4 in post-transcriptional gene regulatory function of tRF5-GluCTC, an respiratory syncytial virus-induced tRNA-derived RNA fragment. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21228766

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu, M., Lu, B., Zhang, J., Ding, J., Liu, P., & Lu, Y. (2020). tRNA-derived RNA fragments in cancer: Current status and future perspectives. Journal of Hematology & Oncology, 13, 121. https://doi.org/10.1186/s13045-020-00955-6

    Article  CAS  Google Scholar 

  30. Dhahbi, J. M., Spindler, S. R., Atamna, H., Boffelli, D., & Martin, D. I. (2014). Deep sequencing of serum small RNAs identifies patterns of 5’ tRNA half and YRNA fragment expression associated with breast cancer. Biomark Cancer, 6, 37–47. https://doi.org/10.4137/bic.S20764

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang, J., Ma, G., Li, M., Han, X., Xu, J., Liang, M., Mao, X., Chen, X., Xia, T., Liu, X., & Wang, S. (2020). Plasma tRNA fragments derived from 5’ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids, 21, 954–964. https://doi.org/10.1016/j.omtn.2020.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nolte-’t Hoen, E. N., Buermans, H. P., Waasdorp, M., Stoorvogel, W., Wauben, M. H., & t Hoen PA,. (2012). Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Research, 40, 9272–9285. https://doi.org/10.1093/nar/gks658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baglio, S. R., Rooijers, K., Koppers-Lalic, D., Verweij, F. J., Pérez Lanzón, M., Zini, N., Naaijkens, B., Perut, F., Niessen, H. W. M., Baldini, N., & Pegtel, D. M. (2015). Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Research & Therapy, 6, 127. https://doi.org/10.1186/s13287-015-0116-z

    Article  CAS  Google Scholar 

  34. Huang, X., Yuan, T., Tschannen, M., Sun, Z., Jacob, H., Du, M., Liang, M., Dittmar, R. L., Liu, Y., Liang, M., Kohli, M., Thibodeau, S. N., Boardman, L., & Wang, L. (2013). Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 14, 319. https://doi.org/10.1186/1471-2164-14-319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dhahbi, J. M., Spindler, S. R., Atamna, H., Boffelli, D., Mote, P., & Martin, D. I. (2013). 5’-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiological Genomics, 45, 990–998. https://doi.org/10.1152/physiolgenomics.00129.2013

    Article  CAS  PubMed  Google Scholar 

  36. Wei, Z., Batagov, A. O., Schinelli, S., Wang, J., Wang, Y., El Fatimy, R., Rabinovsky, R., Balaj, L., Chen, C. C., Hochberg, F., Carter, B., Breakefield, X. O., & Krichevsky, A. M. (2017). Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nature Communications, 8, 1145. https://doi.org/10.1038/s41467-017-01196-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lyons, S. M., Gudanis, D., Coyne, S. M., Gdaniec, Z., & Ivanov, P. (2017). Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nature Communications, 8, 1127. https://doi.org/10.1038/s41467-017-01278-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gámbaro, F., Li Calzi, M., Fagúndez, P., Costa, B., Greif, G., Mallick, E., Lyons, S., Ivanov, P., Witwer, K., Cayota, A., & Tosar, J. P. (2020). Stable tRNA halves can be sorted into extracellular vesicles and delivered to recipient cells in a concentration-dependent manner. RNA Biology, 17, 1168–1182. https://doi.org/10.1080/15476286.2019.1708548

    Article  CAS  PubMed  Google Scholar 

  39. Duitman, E. H., Orinska, Z., & Bulfone-Paus, S. (2011). Mechanisms of cytokine secretion: A portfolio of distinct pathways allows flexibility in cytokine activity. European Journal of Cell Biology, 90, 476–483. https://doi.org/10.1016/j.ejcb.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  40. Benjamin-Davalos, S., Koroleva, M., Allen, C. L., Ernstoff, M. S., & Shu, S. (2021). Co-isolation of cytokines and exosomes: Implications for immunomodulation studies. Frontiers in Immunology, 12, 638111. https://doi.org/10.3389/fimmu.2021.638111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan, L., Huang, X., Liu, Z. X., Ye, Y., Li, R., Zhang, J., Wu, G., Bai, R., Zhuang, L., Wei, L., Li, M., Zheng, Y., Su, J., Deng, J., Deng, S., Zeng, L., Zhang, S., Wu, C., Che, X., … Zheng, J. (2021). Inflammatory cytokine-regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocarcinoma progression. The Journal of Clinical Investigation. https://doi.org/10.1172/jci148130

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: Biogenesis, biologic function and clinical potential. Cell & Bioscience, 9, 19. https://doi.org/10.1186/s13578-019-0282-2

    Article  Google Scholar 

  43. Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., & Ratajczak, M. Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20, 847–856. https://doi.org/10.1038/sj.leu.2404132

    Article  CAS  PubMed  Google Scholar 

  44. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  45. Fong, M. Y., Zhou, W., Liu, L., Alontaga, A. Y., Chandra, M., Ashby, J., Chow, A., O’Connor, S. T., Li, S., Chin, A. R., Somlo, G., Palomares, M., Li, Z., Tremblay, J. R., Tsuyada, A., Sun, G., Reid, M. A., Wu, X., Swiderski, P., … Wang, S. E. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 17, 183–194. https://doi.org/10.1038/ncb3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meng, L., Jiang, L., Chen, J., Ren, H., Gao, Z., Wu, F., Wen, Y., & Yang, L. (2021). Transfer RNA-derived fragment tRF-28-QSZ34KRQ590K in plasma exosomes may be a potential biomarker for atopic dermatitis in pediatric patients. Experimental and Therapeutic Medicine, 21, 489. https://doi.org/10.3892/etm.2021.9920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nature Reviews. Nephrology, 7, 684–696. https://doi.org/10.1038/nrneph.2011.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khurana, R., Ranches, G., Schafferer, S., Lukasser, M., Rudnicki, M., Mayer, G., & Hüttenhofer, A. (2017). Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA, 23, 142–152. https://doi.org/10.1261/rna.058834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mami, I., & Pallet, N. (2018). tRNA fragmentation and protein translation dynamics in the course of kidney injury. RNA Biology, 15, 1147–1156. https://doi.org/10.1080/15476286.2015.1107704

    Article  PubMed  PubMed Central  Google Scholar 

  50. Choi, H. R., Steinberg, M. E., & E YC,. (2015). Osteonecrosis of the femoral head: Diagnosis and classification systems. Current Reviews in Musculoskeletal Medicine, 8, 210–220. https://doi.org/10.1007/s12178-015-9278-7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhao, J. J., Wu, Z. F., Wang, L., Feng, D. H., & Cheng, L. (2016). MicroRNA-145 mediates steroid-induced necrosis of the femoral head by targeting the OPG/RANK/RANKL signaling pathway. PLoS ONE, 11, e0159805. https://doi.org/10.1371/journal.pone.0159805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fang, S., He, T., Jiang, J., Li, Y., & Chen, P. (2020). Osteogenic effect of tsRNA-10277-loaded exosome derived from bone mesenchymal stem cells on steroid-induced osteonecrosis of the femoral head. Drug Des Devel Ther, 14, 4579–4591. https://doi.org/10.2147/dddt.S258024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y., Cai, F., Liu, J., Chang, H., Liu, L., Yang, A., & Liu, X. (2018). Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis. International Journal of Rheumatic Diseases, 21, 1659–1669. https://doi.org/10.1111/1756-185x.13346

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, L., Li, J., Gong, Y., Wu, Q., Tan, S., Sun, D., Xu, X., Zuo, Y., Zhao, Y., Wei, Y. Q., Wei, X. W., & Peng, Y. (2019). Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Molecular Cancer, 18, 74. https://doi.org/10.1186/s12943-019-1000-8

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lin, C., Zheng, L., Huang, R., Yang, G., Chen, J., & Li, H. (2020). tRFs as potential exosome tRNA-derived fragment biomarkers for gastric carcinoma. Clinical Laboratory. https://doi.org/10.7754/Clin.Lab.2019.190811

    Article  PubMed  Google Scholar 

  56. Guzman, N., Agarwal, K., Asthagiri, D., Yu, L., Saji, M., Ringel, M. D., & Paulaitis, M. E. (2015). Breast cancer-specific miR signature unique to extracellular vesicles includes “microRNA-like” tRNA fragments. Molecular Cancer Research, 13, 891–901. https://doi.org/10.1158/1541-7786.Mcr-14-0533

    Article  CAS  PubMed  Google Scholar 

  57. Das, S. G., Romagnoli, M., Mineva, N. D., Barillé-Nion, S., Jézéquel, P., Campone, M., & Sonenshein, G. E. (2016). miR-720 is a downstream target of an ADAM8-induced ERK signaling cascade that promotes the migratory and invasive phenotype of triple-negative breast cancer cells. Breast Cancer Research, 18, 40. https://doi.org/10.1186/s13058-016-0699-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu, C., Wang, D., Feng, Y., Feng, L., & Li, Z. (2021). miR-720 regulates insulin secretion by targeting Rab35. BioMed Research International, 2021, 6662612. https://doi.org/10.1155/2021/6662612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren, B., Yang, B., Li, P., & Ge, L. (2020). Upregulation of MiR-1274a is correlated with survival outcomes and promotes cell proliferation, migration, and invasion of colon cancer. Oncotargets and Therapy, 13, 6957–6966. https://doi.org/10.2147/ott.S246160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoshino, H., Yonezawa, T., Yonemori, M., Miyamoto, K., Sakaguchi, T., Sugita, S., Osako, Y., Tatarano, S., Nakagawa, M., & Enokida, H. (2018). Downregulation of microRNA-1274a induces cell apoptosis through regulation of BMPR1B in clear cell renal cell carcinoma. Oncology Reports, 39, 173–181. https://doi.org/10.3892/or.2017.6098

    Article  CAS  PubMed  Google Scholar 

  61. Ghafour, A. A., Odemis, D. A., Tuncer, S. B., Kurt, B., Saral, M. A., Erciyas, S. K., Erdogan, O. S., Celik, B., Saip, P., & Yazici, H. (2021). High expression level of miR-1260 family in the peripheral blood of patients with ovarian carcinoma. Journal of Ovarian Research, 14, 131. https://doi.org/10.1186/s13048-021-00878-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tarazona, R., Delgado, E., Guarnizo, M. C., Roncero, R. G., Morgado, S., Sánchez-Correa, B., Gordillo, J. J., Dejulián, J., & Casado, J. G. (2011). Human prostasomes express CD48 and interfere with NK cell function. Immunobiology, 216, 41–46. https://doi.org/10.1016/j.imbio.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  63. Vojtech, L., Woo, S., Hughes, S., Levy, C., Ballweber, L., Sauteraud, R. P., Strobl, J., Westerberg, K., Gottardo, R., Tewari, M., & Hladik, F. (2014). Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Research, 42, 7290–7304. https://doi.org/10.1093/nar/gku347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goodfellow, S. J., & White, R. J. (2007). Regulation of RNA polymerase III transcription during mammalian cell growth. Cell Cycle, 6, 2323–2326. https://doi.org/10.4161/cc.6.19.4767

    Article  CAS  PubMed  Google Scholar 

  65. Liapi, E., van Bilsen, M., Verjans, R., & Schroen, B. (2020). tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. Biochimica et Biophysica Acta, Molecular Cell Research, 1867, 118465. https://doi.org/10.1016/j.bbamcr.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, X. L., Li, T., Cao, Y., Yao, Q. P., Liu, X., Li, Y., Guan, Y. Y., Deng, J. J., Jiang, R., & Jiang, J. (2021). tRNA-derived fragments tRF(GlnCTG) induced by arterial injury promote vascular smooth muscle cell proliferation. Mol Ther Nucleic Acids, 23, 603–613. https://doi.org/10.1016/j.omtn.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  67. Fu, S., Zhang, Y., Li, Y., Luo, L., Zhao, Y., & Yao, Y. (2020). Extracellular vesicles in cardiovascular diseases. Cell Death Discov, 6, 68. https://doi.org/10.1038/s41420-020-00305-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weng, Q., Wang, Y., Xie, Y., Yu, X., Zhang, S., Ge, J., Li, Z., Ye, G., & Guo, J. (2022). Extracellular vesicles-associated tRNA-derived fragments (tRFs): Biogenesis, biological functions, and their role as potential biomarkers in human diseases. Journal of Molecular Medicine (Berlin, Germany), 100, 679–695. https://doi.org/10.1007/s00109-022-02189-0

    Article  CAS  PubMed  Google Scholar 

  69. Xie, Y., Yao, L., Yu, X., Ruan, Y., Li, Z., & Guo, J. (2020). Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduction and Targeted Therapy, 5, 109. https://doi.org/10.1038/s41392-020-00217-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TV acknowledges Central University of Kerala for support. PSS thank Faculty seed research grant of the National Institute of Technology, Calicut and Department of Biotechnology (BT/PR16307/MED/30/1729/2016) Govt of India for the support. ST thank Ministry of Education, Govt of India and the National Institute of Technology, Calicut for the fellowship. We apologize to many scientists whose research studies were not included in this review due to page/word limit.

Author information

Authors and Affiliations

Authors

Contributions

TV conceptualized and drafted the manuscript. ST contributed to figure preparation and editing of the manuscript. PSS drafted, edited, and revised the manuscript.

Corresponding author

Correspondence to Thejaswini Venkatesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Not applicable.

Research Involving Human and Animal Rights

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, P.S., Thankachan, S. & Venkatesh, T. Landscape of Clinically Relevant Exosomal tRNA-Derived Non-coding RNAs. Mol Biotechnol 65, 300–310 (2023). https://doi.org/10.1007/s12033-022-00546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00546-5

Keywords

Navigation