Skip to main content

Advertisement

Log in

Clinical Potential of lncRNA PPP1R26-AS1 in Breast Cancer and Its Contribution to Cancer Progression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer has become the most leading diagnosed tumor worldwide in 2020. In this study, the biomarker potential and influence on the cellular function of lncRNA PPP1R26-AS1 was investigated in breast cancer. Expression levels of lncRNA PPP1R26-AS1 in breast tissues and cells were detected by RT-qPCR. Association between lncRNA PPP1R26-AS1 level and clinical parameters was investigated by Chi-square analysis. The prognostic potential was assessed by Kaplan–Meier and multivariate Cox regression analysis. Knockdown of lncRNA PPP1R26-AS1 was subjected to study the effect on cell proliferation, invasion, and migration by CCK-8 and transwell assay. The bind between PPP1R26-AS1 and miR-1226-3p was investigated. LncRNA PPP1R26-AS1 was highly expressed in breast tissues and cell lines. This upregulation was correlated with pTNM, positive ER status, luminal B subtype, positive nodal status, and shorter overall survival in breast cancer patients. Significant decreases in proliferation, migration, and invasion activity were observed upon knockdown of lncRNA PPP1R26-AS1. lncRNA PPP1R26-AS1 could act as ceRNA to bind with miR-1226-3p in breast cancer. LncRNA PPP1R26-AS1, as oncogenic lncRNA, could provide a new perspective on the development of prognostic biomarkers and a new approach in tailoring the treatment personalized in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., et al. (2019). Breast cancer statistics. A Cancer Journal for Clinicians, 69, 438–51.

    Article  Google Scholar 

  2. Ahmad, A. (2019). Breast cancer statistics: Recent trends. Advances in Experimental Medicine and Biology, 1152, 1–7.

    Article  CAS  Google Scholar 

  3. Cao, W., Chen, H. D., Yu, Y. W., Li, N., & Chen, W. Q. (2021). Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chinese Medical Journal (Engl), 134, 783–791.

    Article  Google Scholar 

  4. Azamjah, N., Soltan-Zadeh, Y., & Zayeri, F. (2019). Global trend of breast cancer mortality rate: A 25-year study. Asian Pacific Journal of Cancer Prevention, 20, 2015–2020.

    Article  Google Scholar 

  5. Xie, Y., Valdimarsdóttir, U. A., Wang, C., Zhong, X., Gou, Q., Zheng, H., et al. (2021). Public health insurance and cancer-specific mortality risk among patients with breast cancer: A prospective cohort study in China. International Journal of Cancer, 148, 28–37.

    Article  CAS  Google Scholar 

  6. Nagini, S. (2017). Breast cancer: Current molecular therapeutic targets and new players. Anti-Cancer Agents in Medicinal Chemistry, 17, 152–163.

    Article  CAS  Google Scholar 

  7. Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment: A review. JAMA, 321, 288–300.

    Article  CAS  Google Scholar 

  8. Tsang, J. Y. S., & Tse, G. M. (2020). Molecular classification of breast cancer. Advances in Anatomic Pathology, 27, 27–35.

    Article  CAS  Google Scholar 

  9. Howlader, N., Cronin, K. A., Kurian, A. W., & Andridge, R. (2018). Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiology, Biomarkers & Prevention, 27, 619–626.

    Article  CAS  Google Scholar 

  10. Johansson, A. L. V., Trewin, C. B., Hjerkind, K. V., Ellingjord-Dale, M., Johannesen, T. B., & Ursin, G. (2019). Breast cancer-specific survival by clinical subtype after 7 years follow-up of young and elderly women in a nationwide cohort. International Journal of Cancer, 144, 1251–1261.

    Article  CAS  Google Scholar 

  11. Li, G., Hu, J., & Hu, G. (2017). Biomarker studies in early detection and prognosis of breast cancer. Advances in Experimental Medicine and Biology, 1026, 27–39.

    Article  CAS  Google Scholar 

  12. Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M. H., Moradi-Kalbolandi, S., et al. (2020). Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacology, 84, 106–535.

    Article  Google Scholar 

  13. Dumitrescu, R. G. (2018). Early epigenetic markers for precision medicine. Methods in Molecular Biology, 1856, 3–17.

    Article  Google Scholar 

  14. Shi, S. H., Jiang, J., Sun, L., Zhang, W., & Zhuang, Z. G. (2020). Dynamic regulative biomarker: Long noncoding RNA (lncRNA) in metastatic breast cancer. Clinical Laboratory. https://doi.org/10.7754/Clin.Lab.2020.191140

    Article  PubMed  Google Scholar 

  15. Vikram, R., Ramachandran, R., & Abdul, K. S. (2014). Functional significance of long non-coding RNAs in breast cancer. Breast Cancer, 21, 515–521.

    Article  Google Scholar 

  16. Feng, Y., Wu, M., Hu, S., Peng, X., & Chen, F. (2020). LncRNA DDX11-AS1: A novel oncogene in human cancer. Human Cell, 33, 946–953.

    Article  CAS  Google Scholar 

  17. Buccarelli, M., Lulli, V., Giuliani, A., Signore, M., Martini, M., D’Alessandris, Q. G., et al. (2020). Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: Tumor suppressor role of lncRNA MEG3. Neuro-Oncology, 22, 1771–1784.

    Article  CAS  Google Scholar 

  18. Venkatesh, J., Wasson, M. D., Brown, J. M., Fernando, W., & Marcato, P. (2021). LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Letters, 509, 81–88.

    Article  CAS  Google Scholar 

  19. Zhang, X., Sun, X. F., Cao, Y., Ye, B., Peng, Q., Liu, X., et al. (2018). CBD: A biomarker database for colorectal cancer. Database (Oxford), 2018, bay046.

    Google Scholar 

  20. Xu, S., Kong, D., Chen, Q., Ping, Y., & Pang, D. (2017). Oncogenic long noncoding RNA landscape in breast cancer. Molecular Cancer, 16, 129.

    Article  Google Scholar 

  21. Goldhirsch, A., Wood, W. C., Coates, A. S., Gelber, R. D., Thürlimann, B., & Senn, H. J. (2011). Strategies for subtypes: Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Annals of Oncology, 22, 1736–1747.

    Article  CAS  Google Scholar 

  22. Yoon, S. H., Kim, H. S., Kim, R. N., Jung, S. Y., Hong, B. S., Kang, E. J., et al. (2020). NAD(P)-dependent steroid dehydrogenase-like is involved in breast cancer cell growth and metastasis. BMC Cancer, 20, 375.

    Article  CAS  Google Scholar 

  23. Zhang, L., Chi, B., Chai, J., Qin, L., Zhang, G., Hua, P., et al. (2021). LncRNA CCDC144NL-AS1 serves as a prognosis biomarker for non-small cell lung cancer and promotes cellular function by targeting miR-490-3p. Molecular Biotechnology, 63, 933–940.

    Article  CAS  Google Scholar 

  24. Fahad, U. M. (2019). Breast cancer: Current perspectives on the disease status. Advances in Experimental Medicine and Biology, 1152, 51–64.

    Article  Google Scholar 

  25. Prat, A., Pineda, E., Adamo, B., Galván, P., Fernández, A., Gaba, L., et al. (2015). Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 24(Suppl 2), S26-35.

    Article  Google Scholar 

  26. Vuong, D., Simpson, P. T., Green, B., Cummings, M. C., & Lakhani, S. R. (2014). Molecular classification of breast cancer. Virchows Archiv, 465, 1–14.

    Article  CAS  Google Scholar 

  27. Odle, T. G. (2017). Precision medicine in breast cancer. Radiologic Technology, 88, 401m-m421.

    PubMed  Google Scholar 

  28. Bao, X., Anastasov, N., Wang, Y., & Rosemann, M. (2019). A novel epigenetic signature for overall survival prediction in patients with breast cancer. Journal of Translational Medicine, 17, 380.

    Article  CAS  Google Scholar 

  29. Markopoulos, C., van de Velde, C., Zarca, D., Ozmen, V., & Masetti, R. (2017). Clinical evidence supporting genomic tests in early breast cancer: Do all genomic tests provide the same information? European Journal of Surgical Oncology, 43, 909–920.

    Article  CAS  Google Scholar 

  30. Zheng, X., Wang, X., Zheng, L., Zhao, H., Li, W., Wang, B., et al. (2020). Construction and analysis of the tumor-specific mRNA–miRNA–lncRNA network in gastric cancer. Frontiers in Pharmacology, 11, 1112.

    Article  CAS  Google Scholar 

  31. Tee, A. E., Liu, B., Song, R., Li, J., Pasquier, E., Cheung, B. B., et al. (2016). The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget, 7, 8663–8675.

    Article  Google Scholar 

  32. Chan, J. J., & Tay, Y. (2018). Noncoding RNA:RNA regulatory networks in cancer. International Journal of Molecular Science, 19, 1310.

    Article  Google Scholar 

  33. Mohamadzade, Z., et al. (2021). Cell specific tumor suppressor effect of Hsa-miR-1226-3p through downregulation of HER2, PIK3R2, and AKT1 genes. International Journal of Biochemistry & Cell Biology, 134, 105965.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixiang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Zhang, S., Zhang, H. et al. Clinical Potential of lncRNA PPP1R26-AS1 in Breast Cancer and Its Contribution to Cancer Progression. Mol Biotechnol 64, 660–669 (2022). https://doi.org/10.1007/s12033-022-00452-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00452-w

Keywords

Navigation