Skip to main content
Log in

Biochemical and Molecular Characterizations of a Novel pH- and Temperature-Stable Pectate Lyase from Bacillus amyloliquefaciens S6 for Industrial Application

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, we report cloning of a pectate lyase gene from Bacillus amyloliquefaciens S6 (pelS6), and biochemical characterization of the recombinant pectate lyase. PelS6 was found to be identical with B. subtilis 168 pel enzyme with 100% amino acid sequence homology. Although these two are genetically very close, they are distinctly different in physiology. pelS6 gene encodes a 421-aa protein with a molecular mass of 65,75 kDa. Enzyme activity increased from 12.8 ± 0.3 to 49.6 ± 0.4 units/mg after cloning. The relative enzyme activity of the recPel S6 ranged from 80% to 100% at pH between 4 and 14. It was quite stable at different temperature values ranging from 15 to 90 °C. The recPEL S6 showed a maximal activity at pH 10 and at 60 °C. 0.5 mM of CaCl2 is the most effective metal ion on the recPEL S6 as demonstrated by its increased relative activity with 473%. recPEL S6 remained stable at − 20 °C for 18 months. In addition recPEL S6 increased juice clarity. This study introduces a novel bacterial pectate lyase enzyme with its characteristic capability of being highly thermostable, thermotolerant, and active over a wide range of pH, meaning that it can work at both acidic and alkaline environments, which are the most preferred properties in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abu-Qarn, M., Eichler, J., & Sharon, N. (2008). Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Current Opinion in Structural Biology, 18, 544–550.

    Article  CAS  PubMed  Google Scholar 

  2. Alcaraz, L. D., Moreno-Hagelsieb, G., Eguiarte, L. E., et al. (2010). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics, 11, 332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biz, A., Farias, F. C., Motter, F. A., et al. (2014). Pectinase activity determination: An early deceleration in the release of reducing sugars throws a spanner in the works! PLoS ONE, 9, e109529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bolotin, A., & Borchert, S. (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256. https://doi.org/10.1021/ic00220a054.

    Article  PubMed  Google Scholar 

  5. Bonnin, E., Ralet, M.-C., Thibault, J.-F., & Schols, H. A. (2009). Enzymes for the valorisation of fruit-and vegetable-based co-products. Handbook of waste management and co-product recovery in food processing (pp. 257–285). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, Z., Chen, D., Lu, B., et al. (2016). A novel acid-stable endo-polygalacturonase from Penicillium oxalicum CZ1028: Purification, characterization, and application in the beverage industry. Journal of Microbiology and Biotechnology, 26, 989–998.

    Article  CAS  PubMed  Google Scholar 

  8. Crawford, M. S., & Kolattukudy, P. E. (1987). Pectate lyase from Fusarium solani f. sp. pisi: Purification, characterization, in vitro translation of the mRNA, and involvement in pathogenicity. Archives of Biochemistry and Biophysics, 258, 196–205.

    Article  CAS  PubMed  Google Scholar 

  9. De Lima Damásio, A. R., Maller, A., Márcio Da Silva, T., et al. (2011). Biotechnological potential of alternative carbon sources for production of pectinases by rhizopus microsporus var. rhizopodiformis. Archives of Biology and Technology, 54154, 141–148.

    Article  CAS  Google Scholar 

  10. Dubey, A. K., Yadav, S., Kumar, M., et al. (2016). Molecular biology of microbial pectate lyase: A review. British Biotechnology Journal, 13, 1–26.

    Article  Google Scholar 

  11. Fuchs, A. (1965). The trans-eliminative breakdown of Na-polygalacturonate by Pseudomonas fluorescens. Antonie van Leeuwenhoek, 31, 323–340.

    Article  CAS  PubMed  Google Scholar 

  12. Fujiwara, S. (2002). Extremophiles: Developments of their special functions and potential resources. ShinsukeFujiwara, 94, 518–525.

    CAS  Google Scholar 

  13. Garg, G., Singh, A., Kaur, A., et al. (2016). Microbial pectinases an ecofriendly tool of nature for industries. 3 Biotech, 6, 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garron, M. L., & Cygler, M. (2010). Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology, 20, 1547–1573. https://doi.org/10.1093/glycob/cwq122.

    Article  CAS  PubMed  Google Scholar 

  15. Gómez-Plaza, E., Gil-Muñ Oz, R., López-Roca, J. M., & Martínez, A. (2000). Color and phenolic compounds of a young red wine. Influence of wine-making techniques, storage temperature, and length of storage time. Journal of Agriculture and Food Chemistry, 48, 736–741.

    Article  CAS  Google Scholar 

  16. Gummadi, S. N., & Panda, T. (2003). Purification and biochemical properties of microbial pectinases—A review. Process Biochemistry, 38, 987–996.

    Article  CAS  Google Scholar 

  17. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89, 17–34.

    Article  CAS  PubMed  Google Scholar 

  18. Hoondal, G., Tiwari, R., Tewari, R., et al. (2002). Microbial alkaline pectinases and their industrial applications: A review. Applied Microbiology and Biotechnology, 59, 409–418.

    Article  CAS  PubMed  Google Scholar 

  19. Hugouvieux-Cotte-Pattat, N., Condemine, G., Nasser, W., & Reverchon, S. (1996). Regulation of pectinolysis in Erwinia chrysanthemi. Annual Review of Microbiology, 50, 213–257.

    Article  CAS  PubMed  Google Scholar 

  20. Hugouvieux-Cotte-Pattat, N., Condemine, G., & Shevchik, V. E. (2014). Bacterial pectate lyases, structural and functional diversity. Environmental Microbiology Reports, 6, 427–440.

    Article  CAS  PubMed  Google Scholar 

  21. Jacob, N. (2009). Biotechnology for agro-industrial residues utilisation: Utilisation of agro-residues. In P. S. Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues utilisation: Utilisation of agro-residues (pp. 1–466). Dordrecht: Springer.

    Google Scholar 

  22. Jurick, W. M., Vico, I., McEvoy, J. L., et al. (2009). Isolation, purification, and characterization of a polygalacturonase produced in Penicillium solitum-decayed ‘golden delicious’ apple fruit wayne. Phytopathology, 99, 636–641.

    Article  CAS  PubMed  Google Scholar 

  23. Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresource Technology, 77, 215–227.

    Article  CAS  PubMed  Google Scholar 

  24. Kita, N., Boyd, C. M., Garrett, M. R., et al. (1996). Differential effect of site-directed mutations in pelC on pectate lyase activity, plant tissue maceration, and elicitor activity. Journal of Biological Chemistry, 271, 26529–26535.

    Article  CAS  PubMed  Google Scholar 

  25. Kleerebezem, M., Hols, P., Bernard, E., et al. (2010). The extracellular biology of the lactobacilli. FEMS Microbiology Reviews, 34, 199–230.

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi, T., Hatada, Y., Higaki, N., et al. (1999). Enzymatic properties and deduced amino acid sequence of a high-alkaline pectate lyase from an alkaliphilic Bacillus isolate. Biochimica et Biophysica Acta, 1427, 145–154.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi, T., Koike, K., Yoshimatsu, T., et al. (1999). Purification and Properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. Bioscience Biotechnology and Biochemistry, 63, 65–72.

    Article  CAS  Google Scholar 

  28. Kohli, P., & Gupta, R. (2015). Alkaline pectinases: A review. Biocatalysis and Agricultural Biotechnology, 4, 279–285.

    Article  Google Scholar 

  29. Kozianowski, G., Canganella, F., Rainey, F. A., et al. (1997). Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov. Extremophiles, 1, 171–182.

    Article  CAS  PubMed  Google Scholar 

  30. Lombard, V., Bernard, T., Rancurel, C., et al. (2010). A hierarchical classification of polysaccharide lyases for glycogenomics. Biochemical Journal, 432, 437–444.

    Article  CAS  PubMed  Google Scholar 

  31. Ma, G., Zhu, W., & Liu, Y. (2016). QM/MM studies on the calcium-assisted β-elimination mechanism of pectate lyase from bacillus subtilis. Proteins: Structure, Function, and Bioinformatics, 84, 1606–1615. https://doi.org/10.1002/prot.25103.

    Article  CAS  Google Scholar 

  32. Macmillan, J. D., & Vaughn, R. R. (1962). Purification and properties of a polygalacturonic acid-trans-eliminase produced. Biochemistry, 3, 564–572.

    Article  Google Scholar 

  33. Mukhopadhyay, A., Dasgupta, A. K., Chattopadhyay, D., & Chakrabarti, K. (2012). Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. Bioresource Technology, 116, 348–354.

    Article  CAS  PubMed  Google Scholar 

  34. Nasser, W., Awade, A. C., Reverchon, S., & Robert-Baudouy, J. (1993). Pectate lyase from Bacillus subtilis: Molecular characterization of the gene, and properties of the cloned enzyme. FEBS Letters, 335, 319–326.

    Article  CAS  PubMed  Google Scholar 

  35. Nasser, W., Chalet, F., & Robert-Baudouy, J. (1990). Purification and characterization of extracellular pectate lyase from Bacillus subtilis. Biochimie, 72, 689–695.

    Article  CAS  PubMed  Google Scholar 

  36. Pedrolli, D. B., Monteiro, A. C., Gomes, E., & Carmona, E. C. (2009). Pectin and pectinases: Production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnology Journal, 3, 9–18.

    Article  CAS  Google Scholar 

  37. Phrommao, E., Yongsawatdigul, J., Rodtong, S., & Yamabhai, M. (2011). A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37. BMC Biotechnology, 11, 1–15.

    Article  CAS  Google Scholar 

  38. Pickersgill, R., Jenkins, J., Harris, G., et al. (1994). The structure of Bacillus subtilis pectate lyase in complex with calcium. Nature Structural & Molecular Biology, 1, 717–723.

    Article  CAS  Google Scholar 

  39. Poondla, V., Bandikari, R., Subramanyam, R., & Reddy Obulam, V. S. (2015). Low temperature active pectinases production by Saccharomyces cerevisiae isolate and their characterization. Biocatalysis and Agricultural Biotechnology, 4, 70–76.

    Article  Google Scholar 

  40. Pušić, T., Tarbuk, A., & Dekanić, T. (2015). Bio-innovation in cotton fabric scouring- acid and neutral pectinases. Fibres & Textiles in Eastern Europe, 23, 98–103.

    Google Scholar 

  41. Sakai, T., Sakamoto, T., Hallaert, J., & Vandamme, E. J. (1993). Pectin, pectinase, and protopectinase: Production, properties, and applications. Advances in Applied Microbiology, 39, 213–294.

    Article  CAS  PubMed  Google Scholar 

  42. Sambrook, J., Russell, D. W. (2006). Isolation of high-molecular-weight DNA from mammalian cells using formamide. In: Press CSHL (ed) Cold Spring Harb Protoc, 3rd edn. Cold Spring Harbor, NY

  43. Sato, M., & Kaji, A. (1975). Purification and properties of pectate lyase produced by Streptomyces fradiae IFO 3439. Agricultural and Biological Chemistry, 39, 819–824.

    CAS  Google Scholar 

  44. Sharma, H. P., & Patel, H. (2017). Critical reviews in food science and nutrition enzymatic added extraction and clarification of fruit juices—A review enzymatic added extraction and clarification of fruit juices—A review. Critical Reviews in Food Science and Nutrition, 57, 1215–1227.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma, R., Lee, D.-W., Xu, Z., et al. (2016). Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats. Frontiers in Microbiology, 7, 2039.

    Google Scholar 

  46. Sharon, N. (2007). Celebrating the golden anniversary of the discovery of bacillosamine, the diamino sugar of a Bacillus. Glycobiology, 17, 1150–1155.

    Article  CAS  PubMed  Google Scholar 

  47. Singh Jayani, R., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: A review. Process Biochemistry, 40, 2931–2944.

    Article  CAS  Google Scholar 

  48. Singh, S. A., Plattner, H., & Diekmann, H. (1999). Exopolygalacturonate lyase from a thermophilic Bacillus sp. Enyzme and Microbial Technology, 25, 420–425.

    Article  CAS  Google Scholar 

  49. Soriano, M., Blanco, A., Dıaz, P., & Pastor, F. I. J. (2000). An unusual pectate lyase from a Bacillus sp. with high activity on pectin: Cloning and characterization. Microbiology, 146, 89–95.

    Article  CAS  PubMed  Google Scholar 

  50. Soriano, M., Diaz, P., Javier, F. I., et al. (2006). Pectate lyase C from Bacillus subtilis: A novel endo-cleaving enzyme with activity on highly methylated pectin. Microbiology, 152, 617–625.

    Article  CAS  PubMed  Google Scholar 

  51. Starr, M. P., & Moran, F. (1962). Eliminative split of pectic substances by phytopathogenic soft-rot bacteria. Science, 135, 920–921.

    Article  CAS  PubMed  Google Scholar 

  52. Takao, M., Nakaniwa, T., Yoshikawa, K., et al. (2000). Purification and characterization of thermostable pectate lyase with protopectinase activity from thermophilic Bacillus sp. TS 47. Bioscience, Biotechnology, and Biochemistry, 64, 2360–2367.

    Article  CAS  PubMed  Google Scholar 

  53. Van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6, 213–218.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X., Lu, Z., Xu, T., et al. (2018). Improving the specific activity and thermo-stability of alkaline pectate lyase from Bacillus subtilis 168 for bioscouring. Biochemical Engineering Journal, 129, 74–83.

    Article  CAS  Google Scholar 

  55. Yadav, S., Yadav, P. K., Yadav, D., et al. (2009). Pectin lyase: A review. Process Biochemistry, 44, 1–10.

    Article  CAS  Google Scholar 

  56. Yuan, P., Meng, K., Luo, H., et al. (2011). A novel low-temperature active alkaline pectate lyase from Klebsiella sp. Y1 with potential in textile industry. Process Biochemistry, 46, 1921–1926.

    Article  CAS  Google Scholar 

  57. Zhang, C., Yao, J., Zhou, C., et al. (2013). The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber. BMC Biotechnology, 13, 1–9.

    Article  CAS  Google Scholar 

  58. Zhou, C., Xue, Y., & Ma, Y. (2017). Characterization and overproduction of a thermo-alkaline pectate lyase from alkaliphilic Bacillus licheniformis with potential in ramie degumming. Process Biochemistry, 54, 49–58. https://doi.org/10.1016/j.procbio.2017.01.010.

    Article  CAS  Google Scholar 

  59. Zhou, M., Guo, P., Wang, T., et al. (2017). Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. Biotechnology for Biofuels, 10, 198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, Z., Liu, Y., Chang, Z., et al. (2017). Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming. Applied Microbiology and Biotechnology, 101, 2919–2929.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the BAP (Project No. 05/2016-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Busra Aktas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekli, S., Aktas, B., Gencer, D. et al. Biochemical and Molecular Characterizations of a Novel pH- and Temperature-Stable Pectate Lyase from Bacillus amyloliquefaciens S6 for Industrial Application. Mol Biotechnol 61, 681–693 (2019). https://doi.org/10.1007/s12033-019-00194-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00194-2

Keywords

Navigation