Skip to main content

Advertisement

Log in

Identification of Reference Genes for Analysis of microRNA Expression Patterns in Equine Chorioallantoic Membrane and Serum

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have important posttranscriptional regulatory abilities, and there is considerable interest in evaluating their expression patterns in different pathophysiological states. The most common method of quantifying miRNA expression is quantitative reverse transcription PCR; however, the identification of tissue-specific and species-specific reference miRNA is a prerequisite for miRNA expression analysis. Currently, no reference genes have been described for evaluating miRNA expression in equine serum and chorioallantoic membrane (CAM) during pregnancy. The aim of the present study was to characterize reference genes for normalization of miRNA expression in CAM and serum in the pregnant equine. To identify the most stable miRNAs in serum, expression of potential candidates was evaluated in serum samples from diestrous mares, pregnant mares and geldings. To identify the most stable miRNAs in CAM, expression of potential candidates was evaluated in CAM, collected from mares at 4, 6 and 10 months of pregnancy and immediately postpartum. From a previously generated miRNA sequencing dataset, two separate lists of potential reference miRNAs were identified (serum and CAM) using the NormFinder program, in addition to the commonly used small RNA normalizers, 5S rRNA and U6 snRNA. The putative reference miRNAs were selected using geNorm and NormFinder. In case of a nonsignificant correlation between the results of ranking and stability value between these two programs, ranking from BestKeeper was also included. NormFinder and geNorm consistently identified eca-miR-21-5p, eca-let-7a-5p and eca-miR-10a-5p as the three most stable reference genes for the normalization of serum miRNAs. Within CAM samples, the average ranking obtained from the ranking of NormFinder, geNorm and BestKeeper identified eca-miR-8908a-1-5p, eca-miR-369-5p and eca-miR-106a-5p as the three most stable miRNAs. These observations provide information about equine-specific reference genes that can be used for normalizing miRNAs expression patterns in CAM and serum during the equine pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  Google Scholar 

  2. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 105, 10513–10518.

    Article  CAS  Google Scholar 

  3. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences, 108, 5003–5008.

    Article  CAS  Google Scholar 

  4. Vickers, K. C., & Remaley, A. T. (2012). Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology, 23, 91–97.

    Article  CAS  Google Scholar 

  5. Synetos, A., Toutouzas, K., Stathogiannis, K., Latsios, G., Tsiamis, E., Tousoulis, D., et al. (2013). MicroRNAs in arterial hypertension. Current Topics in Medicinal Chemistry, 13, 1527–1532.

    Article  CAS  Google Scholar 

  6. Morales-Prieto, D. M., Ospina-Prieto, S., Chaiwangyen, W., Schoenleben, M., & Markert, U. R. (2013). Pregnancy-associated miRNA-clusters. Journal of Reproductive Immunology, 97, 51–61.

    Article  CAS  Google Scholar 

  7. Ioannidis, J., & Donadeu, X. (2016). Circulating microrna signatures associated with early bovine pregnancy. Reproduction, Fertility, and Development, 28, 130.

    Article  Google Scholar 

  8. Jairajpuri, D. S., & Almawi, W. Y. (2016). MicroRNA expression pattern in pre-eclampsia. Molecular Medicine Reports, 13, 2351–2358.

    Article  CAS  Google Scholar 

  9. de Planell-Saguer, M., & Rodicio, M. C. (2011). Analytical aspects of microRNA in diagnostics: A review. Analytica Chimica Acta, 699, 134–152.

    Article  Google Scholar 

  10. Solayman, M. H. M., Langaee, T., Patel, A., El-Wakeel, L., El-Hamamsy, M., Badary, O., et al. (2016). Identification of suitable endogenous normalizers for qRT-PCR analysis of plasma microRNA expression in essential hypertension. Molecular Biotechnology, 58, 179–187.

    Article  CAS  Google Scholar 

  11. Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6, 986–994.

    Article  CAS  Google Scholar 

  12. Roberts, T. C., Coenen-Stass, A. M., & Wood, M. J. (2014). Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE, 9, e89237.

    Article  Google Scholar 

  13. McDermott, A. M., Kerin, M. J., & Miller, N. (2013). Identification and validation of miRNAs as endogenous controls for RQ-PCR in blood specimens for breast cancer studies. PLoS ONE, 8, e83718.

    Article  Google Scholar 

  14. Chen, C., Tan, R., Wong, L., Fekete, R., & Halsey, J. (2011). Quantitation of microRNAs by real-time RT-qPCR.  PCR protocols. Methods and Protocols, 687, 113–134.

    Article  CAS  Google Scholar 

  15. Tricarico, C., Pinzani, P., Bianchi, S., Paglierani, M., Distante, V., Pazzagli, M., et al. (2002). Quantitative real-time reverse transcription polymerase chain reaction: Normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Analytical Biochemistry, 309, 293–300.

    Article  CAS  Google Scholar 

  16. Bas, A., Forsberg, G., Hammarström, S., & Hammarström, M. L. (2004). Utility of the housekeeping genes 18S rRNA, β-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scandinavian Journal of Immunology, 59, 566–573.

    Article  CAS  Google Scholar 

  17. Yang, Y., Zhang, X., Chen, Y., Guo, J., Ling, H., Gao, S., et al. (2016). Selection of reference genes for normalization of microRNA expression by RT-qPCR in sugarcane buds under cold stress. Frontiers in Plant Science, 7, 86.

    Google Scholar 

  18. Peltier, H. J., & Latham, G. J. (2008). Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA, 14, 844–852.

    Article  CAS  Google Scholar 

  19. Tiberio, P., Callari, M., Angeloni, V., Daidone, M. G., & Appierto, V. (2015). Challenges in using circulating miRNAs as cancer biomarkers. BioMed Research International, 2015, 731479–731489.

    Article  Google Scholar 

  20. Klein, C., Rutllant, J., & Troedsson, M. H. (2011). Expression stability of putative reference genes in equine endometrial, testicular, and conceptus tissues. BMC Research Notes, 4, 1.

    Article  Google Scholar 

  21. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 1–12.

    Article  Google Scholar 

  22. Schwarzenbach, H., da Silva, A. M., Calin, G., & Pantel, K. (2015). Data normalization strategies for microRNA quantification. Clinical Chemistry, 61, 1333–1342.

    Article  CAS  Google Scholar 

  23. Shaffer, J., Schlumpberger, M., & Lader, E. (2012) miRNA profiling from blood—Challenges and recommendations. Qiagen Scientific Article 1–10.

  24. Chugh, P., & Dittmer, D. P. (2012). Potential pitfalls in microRNA profiling. Wiley Interdisciplinary Reviews: RNA, 3, 601–616.

    Article  CAS  Google Scholar 

  25. Shen, Y., Li, Y., Ye, F., Wang, F., Wan, X., Lu, W., et al. (2011). Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Experimental & Molecular Medicine, 43, 358–366.

    Article  CAS  Google Scholar 

  26. Ratert, N., Meyer, H.-A., Jung, M., Mollenkopf, H.-J., Wagner, I., Miller, K., et al. (2012). Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS ONE, 7, e39309.

    Article  CAS  Google Scholar 

  27. Mi, Q.-S., Weiland, M., Qi, R.-Q., Gao, X.-H., Poisson, L. M., & Zhou, L. (2012). Identification of mouse serum miRNA endogenous references by global gene expression profiles. PLoS ONE, 7, e31278.

    Article  CAS  Google Scholar 

  28. Huang, Z., Huang, D., Ni, S., Peng, Z., Sheng, W., & Du, X. (2010). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 127, 118–126.

    Article  CAS  Google Scholar 

  29. Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology, 141, 672–675.

    Article  Google Scholar 

  30. Chen, X., Liang, H., Guan, D., Wang, C., Hu, X., Cui, L., et al. (2013). A combination of Let-7d, Let-7g and Let-7i serves as a stable reference for normalization of serum microRNAs. PLoS ONE, 8, e79652.

    Article  CAS  Google Scholar 

  31. Timoneda, O., Balcells, I., Córdoba, S., Castelló, A., & Sánchez, A. (2012). Determination of reference microRNAs for relative quantification in porcine tissues. PLoS ONE, 7, e44413.

    Article  CAS  Google Scholar 

  32. Gu, Y., Li, M., Zhang, K., Chen, L., Jiang, A. A., Wang, J., et al. (2011). Identification of suitable endogenous control microRNA genes in normal pig tissues. Animal Science Journal, 82, 722–728.

    Article  CAS  Google Scholar 

  33. Bae, I.-S., Chung, K. Y., Yi, J., Kim, T. I., Choi, H.-S., Cho, Y.-M., et al. (2015). Identification of reference genes for relative quantification of circulating microRNAs in bovine serum. PLoS ONE, 10, e0122554.

    Article  Google Scholar 

  34. Mitchell, M. D., Peiris, H. N., Kobayashi, M., Koh, Y. Q., Duncombe, G., Illanes, S. E., et al. (2015). Placental exosomes in normal and complicated pregnancy. American Journal of Obstetrics and Gynecology, 213, S173–S181.

    Article  CAS  Google Scholar 

  35. Cuffe, J. S., Holland, O., Salomon, C., Rice, G., & Perkins, A. V. (2017). Placental derived biomarkers of pregnancy disorders. Placenta, 54, 104–110.

    Article  CAS  Google Scholar 

  36. Pohler, K. G., Green, J. A., Moley, L. A., Gunewardena, S., Hung, W.T., Payton, R. R., et al. (2017). Circulating microRNA as candidates for early embryonic viability in cattle. Molecular Reproduction and Development, 84, 731–743.

    Article  CAS  Google Scholar 

  37. Modi, B. P., Washington, S., Walsh, S. W., Jackson-Cook, C., Archer, K. J., & Strauss, J. F. (2017). Expression patterns of the chromosome 21 MicroRNA cluster (miR-99a, miR-125b and let-7c) in chorioamniotic membranes. Placenta, 49, 1–9.

    Article  CAS  Google Scholar 

  38. Bellingham, S. A., Shambrook, M., & Hill, A. F. (2017). Quantitative analysis of exosomal miRNA via qPCR and digital PCR. Exosomes and Microvesicles: Methods and Protocols, 1545, 55–70.

    Article  Google Scholar 

  39. Salone, V., & Rederstorff, M. (2015). Stem-loop RT-PCR based quantification of small non-coding RNAs. Small Non-Coding RNAs: Methods and Protocols, 1296, 103–108.

    CAS  Google Scholar 

  40. De Spiegelaere, W., Dern-Wieloch, J., Weigel, R., Schumacher, V., Schorle, H., Nettersheim, D., et al. (2015). Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE, 10, e0122515.

    Article  Google Scholar 

  41. Busk, P. K. (2014). A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics, 15, 1.

    Article  Google Scholar 

  42. Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., et al. (2008). High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Research, 36, e143.

    Article  Google Scholar 

  43. Kohl, M. (2007). SLqPCR: Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH. Jena: R Package, SIRS-Lab GmbH.

    Google Scholar 

  44. Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.

    Article  CAS  Google Scholar 

  45. Harrell Jr, F. E., & Dupont, M. C. (2006) The Hmisc Packag. R package version 3, 0-12.

  46. Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.

    Article  CAS  Google Scholar 

  47. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8, 1.

    Article  Google Scholar 

  48. Klie, M., & Debener, T. (2011). Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Research Notes, 4, 1.

    Article  Google Scholar 

  49. Galeano, E., Vasconcelos, T. S., Ramiro, D. A., De Martin, V. D. F., & Carrer, H. (2014). Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis Lf). BMC Research Notes, 7, 1.

    Article  Google Scholar 

  50. Matoušková, P., Bártíková, H., Boušová, I., Hanušová, V., Szotáková, B., & Skálová, L. (2014). Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS ONE, 9, e86033.

    Article  Google Scholar 

  51. Ioannidis, J., & Donadeu, F. X. (2016). Circulating microRNA Profiles during the bovine oestrous cycle. PLoS ONE, 11, e0158160.

    Article  Google Scholar 

  52. Donadeu, F., & Schauer, S. (2013). Differential miRNA expression between equine ovulatory and anovulatory follicles. Domestic Animal Endocrinology, 45, 122–125.

    Article  CAS  Google Scholar 

  53. da Silveira, J. C., Veeramachaneni, D. R., Winger, Q. A., Carnevale, E. M., & Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: A possible new form of cell communication within the ovarian follicle. Biology of Reproduction, 86, 71.

    Article  Google Scholar 

  54. Sohel, M. M. H., Hoelker, M., Noferesti, S. S., Salilew-Wondim, D., Tholen, E., Looft, C., et al. (2013). Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: Implications for bovine oocyte developmental competence. PLoS ONE, 8, e78505.

    Article  CAS  Google Scholar 

  55. Viswanathan, S. R., Mermel, C. H., Lu, J., Lu, C.-W., Golub, T. R., & Daley, G. Q. (2009). microRNA expression during trophectoderm specification. PLoS ONE, 4, e6143.

    Article  Google Scholar 

  56. Schmittgen, T. D., & Zakrajsek, B. A. (2000). Effect of experimental treatment on housekeeping gene expression: Validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 69–81.

    Article  CAS  Google Scholar 

  57. Hoy, A. M., Lundie, R. J., Ivens, A., Quintana, J. F., Nausch, N., Forster, T., et al. (2014). Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection. PLoS Neglected Tropical Disease, 8, e2701.

    Article  Google Scholar 

  58. Unger, L., Fouché, N., Leeb, T., Gerber, V., & Pacholewska, A. (2016). Optimized methods for extracting circulating small RNAs from long-term stored equine samples. Acta Veterinaria Scandinavica, 58, 44.

    Article  Google Scholar 

  59. Zeka, F., Mestdagh, P., & Vandesompele, J. (2015). RT-qPCR-based quantification of small non-coding RNAs (pp. 85–102). Small Non-Coding RNAs: Methods and Protocols.

    Google Scholar 

  60. Ferdous, J., Li, Y., Reid, N., Langridge, P., Shi, B.-J., & Tricker, P. J. (2015). Identification of reference genes for quantitative expression analysis of MicroRNAs and mRNAs in barley under various stress conditions. PLoS ONE, 10, e0118503.

    Article  Google Scholar 

  61. Lee, S., Hwang, S., Yu, H. J., Oh, D., Choi, Y. J., Kim, M.-C., et al. (2016). Expression of microRNAs in horse plasma and their characteristic nucleotide composition. PLoS ONE, 11, e0146374.

    Article  Google Scholar 

  62. Fu, G., Brkić, J., Hayder, H., & Peng, C. (2013). MicroRNAs in human placental development and pregnancy complications. International Journal of Molecular Sciences, 14, 5519–5544.

    Article  CAS  Google Scholar 

  63. Lou, Y., Yang, X., Wang, F., Cui, Z., & Huang, Y. (2010). MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. International Journal of Molecular Medicine, 26, 819.

    Article  CAS  Google Scholar 

  64. Palma-Vera, S., Sharbati, S., & Einspanier, R. (2015). Identification of miRNAs in bovine endometrium through RNAseq and prediction of regulated pathways. Reproduction in Domestic Animals, 50, 800–806.

    Article  CAS  Google Scholar 

  65. Cheong, A. W., Pang, R. T., Liu, W.-M., Kottawatta, K. S. A., Lee, K.-F., & Yeung, W. S. (2014). MicroRNA let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Human Reproduction, 29, 750–762.

    Article  CAS  Google Scholar 

  66. Wessels, J. M., Edwards, A. K., Khalaj, K., Kridli, R. T., Bidarimath, M., & Tayade, C. (2013). The microRNAome of pregnancy: Deciphering miRNA networks at the maternal-fetal interface. PLoS ONE, 8, e72264.

    Article  Google Scholar 

  67. Xia, H.-F., Jin, X.-H., Song, P.-P., Cui, Y., Liu, C.-M., & Ma, X. (2010). Temporal and spatial regulation of let-7a in the uterus during embryo implantation in the rat. Journal of Reproduction and Development, 56, 73–78.

    Article  CAS  Google Scholar 

  68. Wang, Y., Lv, Y., Gao, S., Zhang, Y., Sun, J., Gong, C., et al. (2016). MicroRNA profiles in spontaneous decidualized menstrual endometrium and early pregnancy decidua with successfully implanted embryos. PLoS ONE, 11, e0143116.

    Article  Google Scholar 

  69. Zhang, C., Li, Q., Ren, N., Li, C., Wang, X., Xie, M., et al. (2015). Placental miR-106a ∼ 363 cluster is dysregulated in preeclamptic placenta. Placenta, 36, 250–252.

    Article  Google Scholar 

  70. Rekker, K., Saare, M., Roost, A. M., Salumets, A., & Peters, M. (2013). Circulating microRNA Profile throughout the menstrual cycle. PLoS ONE, 8, e81166.

    Article  Google Scholar 

  71. Ng, Y. H., Rome, S., Jalabert, A., Forterre, A., Singh, H., Hincks, C. L., et al. (2013). Endometrial exosomes/microvesicles in the uterine microenvironment: A new paradigm for embryo-endometrial cross talk at implantation. PLoS ONE, 8, e58502.

    Article  CAS  Google Scholar 

  72. Ma, L., Zhang, X.-Q., Zhou, D.-X., Cui, Y., Deng, L.-L., Yang, T., et al. (2016). Feasibility of urinary microRNA profiling detection in intrahepatic cholestasis of pregnancy and its potential as a non-invasive biomarker. Scientific Reports, 6, 31535. https://doi.org/10.1038/srep31535.

    Article  CAS  Google Scholar 

  73. Yabushita, S., Fukamachi, K., Tanaka, H., Sumida, K., Deguchi, Y., Sukata, T., et al. (2012). Circulating microRNAs in serum of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Pancreas, 41, 1013–1018.

    Article  CAS  Google Scholar 

  74. Giraud-Triboult, K., Rochon-Beaucourt, C., Nissan, X., Champon, B., Aubert, S., & Piétu, G. (2011). Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1. Physiological Genomics, 43, 77–86.

    Article  CAS  Google Scholar 

  75. Castilla, M. Á., Moreno-Bueno, G., Romero-Pérez, L., Vijver, D., Van, K., Biscuola, M., et al. (2011). Micro-RNA signature of the epithelial–mesenchymal transition in endometrial carcinosarcoma. The Journal of Pathology, 223, 72–80.

    Article  CAS  Google Scholar 

  76. Benz, F., Roderburg, C., Cardenas, D. V., Vucur, M., Gautheron, J., Koch, A., et al. (2013). U6 is unsuitable for normalization of serum miRNA levels in patients with sepsis or liver fibrosis. Experimental & Molecular Medicine, 45, e42.

    Article  Google Scholar 

  77. Reid, G., Kirschner, M. B., & van Zandwijk, N. (2011). Circulating microRNAs: Association with disease and potential use as biomarkers. Critical Reviews in Oncology/Hematology, 80, 193–208.

    Article  Google Scholar 

  78. Marabita, F., de Candia, P., Torri, A., Tegnér, J., Abrignani, S., & Rossi, R. L. (2015). Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings in Bioinformatics, 17, 204–212.

    Article  Google Scholar 

  79. Gee, H., Buffa, F., Camps, C., Ramachandran, A., Leek, R., Taylor, M., et al. (2011). The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. British Journal of Cancer, 104, 1168–1177.

    Article  CAS  Google Scholar 

  80. Lamba, V., Ghodke-Puranik, Y., Guan, W., & Lamba, J. K. (2014). Identification of suitable reference genes for hepatic microRNA quantitatio. BMC Research Notes, 7, 129.

    Article  Google Scholar 

  81. Wotschofsky, Z., Meyer, H.-A., Jung, M., Fendler, A., Wagner, I., Stephan, C., et al. (2011). Reference genes for the relative quantification of microRNAs in renal cell carcinomas and their metastases. Analytical Biochemistry, 417, 233–241.

    Article  CAS  Google Scholar 

  82. Torres, A., Torres, K., Wdowiak, P., Paszkowski, T., & Maciejewski, R. (2013). Selection and validation of endogenous controls for microRNA expression studies in endometrioid endometrial cancer tissues. Gynecologic Oncology, 130, 588–594.

    Article  CAS  Google Scholar 

  83. Serafin, A., Foco, L., Blankenburg, H., Picard, A., Zanigni, S., Zanon, A., et al. (2014). Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples. BMC Research Notes, 7, 715.

    Article  Google Scholar 

  84. Hellemans, J., & Vandesompele, J. (2014). Selection of reliable reference genes for RT-qPCR analysis. Quantitative Real-Time PCR: Methods and Protocols, 1160, 19–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Claudia Klein and Derek Toms for their technical assistance with “SLqPCR” package.

Funding

This work was funded by the Kentucky Thoroughbred Association/Kentucky Thoroughbred Breeders and Owners, the Albert G. Clay Endowment and the Paul Mellon Postdoctoral fellowships at the University of Kentucky and the Special Research Fund (BOF) at Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry A. Ball.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dini, P., Loux, S.C., Scoggin, K.E. et al. Identification of Reference Genes for Analysis of microRNA Expression Patterns in Equine Chorioallantoic Membrane and Serum. Mol Biotechnol 60, 62–73 (2018). https://doi.org/10.1007/s12033-017-0047-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0047-2

Keywords

Navigation