Skip to main content

Advertisement

Log in

Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To find out differences and similarities in phenotypic, proliferative, and trans-differentiation properties of stem cells isolated from pulp of deciduous (SHEDs) and permanent (DPSCs) teeth with human bone marrow stem cells (BMSCs), we examined the expression of mesenchymal and embryonic stem cell markers in relation to the proliferation and osteogenic differentiation potentials of these cells. In this way, after isolating SHEDs, DPSCs, and BMSCs, cell proliferation was evaluated and population doubling time was calculated accordingly. Expression patterns of mesenchymal, hematopoietic, and embryonic stem cell markers were assessed followed by examining differentiation potential toward osseous tissue through alizarin red staining and qRT-PCR. Based on the results, the proliferation rates of SHEDs and DPSCs were significantly higher than that of BMSCs (P < 0.0001). High expression of mesenchymal stem cell markers and weak expression of hematopoietic markers were observed in all the three groups. The mean expression of OCT-4 was significantly higher in SHEDs and DPSCs (P = 0.028), while the expression of SSEA-4 was lower (P = 0.006) compared to BMSCs. Osteogenic differentiation potential of SHEDs was greater than DPSCs; however, it was lower than that of BMSCs. Conclusively, the distinctive immunophenotyping, proliferation rate, and differentiation pattern of SHEDs and DPSCs discriminate these cells from BMSCs. Furthermore, dissimilarity in differentiation potential is evidence implying that SHEDs might be more primitive stem cell population compared to DPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4, 267–274.

    CAS  Google Scholar 

  2. Bissels, U., Eckardt, D., & Bosio, A. (2013). In G. Steinhoff (Ed.), Regenerative medicine from protocol to patient (2nd ed., pp. 155–176). The Netherlands: Springer.

    Google Scholar 

  3. Estrela, C., Alencar, A. H., Kitten, G. T., Vencio, E. F., & Gava, E. (2011). Mesenchymal stem cells in the dental tissues: Perspectives for tissue regeneration. Brazilian Dental Journal, 22, 91–98.

    Article  Google Scholar 

  4. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 13625–13630.

    Article  CAS  Google Scholar 

  5. d’Aquino, R., De Rosa, A., Laino, G., Caruso, F., Guida, L., Rullo, R., et al. (2009). Human dental pulp stem cells: from biology to clinical applications. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 312B, 408–415.

    Article  Google Scholar 

  6. Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81, 531–535.

    Article  CAS  Google Scholar 

  7. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science (New York, NY), 290, 1779–1782.

  8. Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G. D., & Crain, B. (2003). Transplanted bone marrow generates new neurons in human brains. Proceedings of the National Academy of Sciences of the United States of America, 100, 1364–1369.

    Article  CAS  Google Scholar 

  9. Santos, D. M. (2011). Genetic engineering: Recent developments in applications (1st edn). New York: CRC Press.

  10. Kamota, T., Li, T. S., Morikage, N., Murakami, M., Ohshima, M., Kubo, M., et al. (2009). Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. Journal of the American College of Cardiology, 53, 1814–1822.

    Article  CAS  Google Scholar 

  11. Pituch-Noworolska, A., Majka, M., Janowska-Wieczorek, A., Baj-Krzyworzeka, M., Urbanowicz, B., Malec, E., & Ratajczak, M. Z. (2003). Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues: An alternative hypothesis to stem cell plasticity. Folia Histochemica et Cytobiologica, 41, 13–21.

    Google Scholar 

  12. Zhou, S. B., Wang, J., Chiang, C. A., Sheng, L. L., & Li, Q. F. (2013). Mechanical stretch upregulates SDF-1alpha in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells, 31, 2703–2713.

    Article  CAS  Google Scholar 

  13. Deschaseaux, F., Sensébé, L., & Heymann, D. (2009). Mechanisms of bone repair and regeneration. Trends in Molecular Medicine, 15, 417–429.

    Article  CAS  Google Scholar 

  14. Takahashi, K. (1992). Pulpal vascular changes in inflammation. Proceedings of the Finnish Dental Society, 88(Suppl 1), 381–385.

    Google Scholar 

  15. Karaoz, E., Demircan, P. C., Saglam, O., Aksoy, A., Kaymaz, F., & Duruksu, G. (2011). Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochemistry and Cell Biology, 136, 455–473.

    Article  Google Scholar 

  16. Tamaki, Y., Nakahara, T., Ishikawa, H., & Sato, S. (2013). In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology, 101, 121–132.

    Article  CAS  Google Scholar 

  17. Mead, B., Berry, M., Logan, A., Scott, R. A., Leadbeater, W., & Scheven, B. A. (2015). Stem cell treatment of degenerative eye disease. Stem Cell Research, 14, 243–257. doi:10.1016/j.scr.2015.02.003. Epub 2015 Feb 24.

    Article  CAS  Google Scholar 

  18. Jussila, M., & Thesleff, I. (2012). Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harbor Perspectives in Biology, 4, a008425.

    Article  Google Scholar 

  19. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100, 5807–5812.

    Article  CAS  Google Scholar 

  20. Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., & Gerson, S. L. (1998). Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. Journal of Cellular Physiology, 176, 57–66.

    Article  CAS  Google Scholar 

  21. Kazemnejad, S., Allameh, A., Soleimani, M., Gharehbaghian, A., Mohammadi, Y., Amirizadeh, N., & Jazayery, M. (2009). Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology, 24, 278–287.

    Article  CAS  Google Scholar 

  22. Marycz, K., Smieszek, A., Grzesiak, J., Siudzinska, A., Maredziak, M., Donesz-Sikorska, A., & Krzak, J. (2015). The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO2 sol–gel-derived biomaterial. BioMed Research International, 2015, 651097.

    Article  Google Scholar 

  23. Lotfy, A., Salama, M., Zahran, F., Jones, E., Badawy, A., & Sobh, M. (2014). Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: A comparative study. International Journal of Stem Cells, 7, 135–142.

    Article  CAS  Google Scholar 

  24. Ruth, V. (2006). http://www.doubling-time.com/compute.php. Accessed 10 Feb 2015.

  25. Ruijter, J. M., Ramakers, C., Hoogaars, W. M., Karlen, Y., Bakker, O., van den Hoff, M. J., & Moorman, A. F. (2009). Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37, e45.

    Article  CAS  Google Scholar 

  26. Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30, e36.

    Article  Google Scholar 

  27. Tirino, V., Paino, F., De Rosa, A., & Papaccio, G. (2012). Identification, isolation, characterization, and banking of human dental pulp stem cells. Methods in Molecular Biology (Clifton, N.J.), 879, 443–463.

  28. Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29, 532–539.

    Article  CAS  Google Scholar 

  29. Nanci, A. (2012). Ten cate’s oral histology: Development, structure, and function (8th edn.). Missouri: Mosby.

  30. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  Google Scholar 

  31. Scuteri, A., Donzelli, E., Foudah, D., Caldara, C., Redondo, J., D’Amico, G., et al. (2014). Mesengenic differentiation: Comparison of human and rat bone marrow mesenchymal stem cells. International Journal of Stem Cells, 7, 127–134.

    Article  CAS  Google Scholar 

  32. Jones, E. A., Kinsey, S. E., English, A., Jones, R. A., Straszynski, L., Meredith, D. M., et al. (2002). Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis and Rheumatism, 46, 3349–3360.

    Article  Google Scholar 

  33. Cheng, P. H., Snyder, B., Fillos, D., Ibegbu, C. C., Huang, A. H., & Chan, A. W. (2008). Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee. BMC Cell Biology, 9, 20.

    Article  Google Scholar 

  34. Dissanayaka, W. L., Zhu, X., Zhang, C., & Jin, L. (2011). Characterization of dental pulp stem cells isolated from canine premolars. Journal of Endodontics, 37, 1074–1080.

    Article  Google Scholar 

  35. Ferro, F., Spelat, R., D’Aurizio, F., Puppato, E., Pandolfi, M., Beltrami, A. P., et al. (2012). Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS ONE, 7, e41774.

    Article  CAS  Google Scholar 

  36. Ma, D., Gao, J., Yue, J., Yan, W., Fang, F., & Wu, B. (2012). Changes in proliferation and osteogenic differentiation of stem cells from deep caries in vitro. Journal of Endodontics, 38, 796–802.

    Article  Google Scholar 

  37. Huang, A. H., Chen, Y. K., Chan, A. W., Shieh, T. Y., & Lin, L. M. (2009). Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. Journal of Endodontics, 35, 673–681.

    Article  Google Scholar 

  38. Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P., & Geurtsen, W. (2011). Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcified Tissue International, 88, 130–141.

    Article  CAS  Google Scholar 

  39. Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P., & Geurtsen, W. (2011). Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology, 56, 709–721.

    Article  CAS  Google Scholar 

  40. Bernardi, L., Luisi, S. B., Fernandes, R., Dalberto, T. P., Valentim, L., Bogo Chies, J. A., et al. (2011). The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. Journal of endodontics, 37, 973–979.

    Article  Google Scholar 

  41. Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109, 1743–1751.

    Article  CAS  Google Scholar 

  42. Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Reviews, 5, 378–386.

    Article  CAS  Google Scholar 

  43. Davies, O. G., Cooper, P. R., Shelton, R. M., Smith, A. J., & Scheven, B. A. (2015). A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. Journal of Bone and Mineral Metabolism, 33, 371–382. doi:10.1007/s00774-014-0601-y. Epub 2014 Jul 6.

    Article  CAS  Google Scholar 

  44. Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  CAS  Google Scholar 

  45. Martland, M., & Robison, R. (1924). The possible significance of hexosephosphoric esters in ossification: Part V. The enzyme in the early stages of bone development. Biochemical Journal, 18, 1354–1357.

    Article  CAS  Google Scholar 

  46. Robison, R., Macleod, M., & Rosenheim, A. H. (1930). The possible significance of hexosephosphoric esters in ossification: Calcification in vitro. Biochemical Journal, 24, 1927–1941.

    Article  CAS  Google Scholar 

  47. Bellows, C. G., Aubin, J. E., & Heersche, J. N. M. (1991). Initiation and progression of mineralization of bone nodules formed in vitro: The role of alkaline phosphatase and organic phosphate. Bone and Mineral, 14, 27–40.

    Article  CAS  Google Scholar 

  48. Park, S. J., Bae, H. S., & Park, J. C. (2015). Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. Journal of Molecular Histology, 46, 93–106.

    Article  CAS  Google Scholar 

  49. Ducy, P. (2000). Cbfa1: A molecular switch in osteoblast biology. Developmental Dynamics, 219, 461–471.

    Article  CAS  Google Scholar 

  50. Viereck, V., Siggelkow, H., Tauber, S., Raddatz, D., Schutze, N., & Hüfner, M. (2002). Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. Journal of Cellular Biochemistry, 86, 348–356.

    Article  CAS  Google Scholar 

  51. Calvi, L. M., Sims, N. A., Hunzelman, J. L., Knight, M. C., Giovannetti, A., Saxton, J. M., et al. (2001). Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. Journal of Clinical Investigation, 107, 277–286.

    Article  CAS  Google Scholar 

  52. Koyama, N., Okubo, Y., Nakao, K., & Bessho, K. (2009). Evaluation of pluripotency in human dental pulp cells. Journal of Oral and Maxillofacial Surgery, 67, 501–506.

    Article  Google Scholar 

  53. Ponnaiyan, D., & Jegadeesan, V. (2014). Comparison of phenotype and differentiation marker gene expression profiles in human dental pulp and bone marrow mesenchymal stem cells. European Journal of Dentistry, 8, 307–313.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms Zahra Ghaempanah for her invaluable assistance.

Source of Financial Support

This research was funded and supported by a grant from Tehran University of Medical Sciences (TUMS); Grant No. 92-02-69-19971 and Avicenna Research Institute. No external funding, apart from the support of the authors’ institutions, was available for this study. TUMS and Avicenna Research Institute had no involvement in the study design, data collection, analysis and interpretation, writing of the report, manuscript preparation, or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaieh Kazemnejad.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest and they do not have any financial or personal relationships with other people or organizations that could inappropriately influence (bias) the work.

Informed Consent

All samples were collected under a protocol approved by the Medical Ethics Committee of Tehran University of Medical Sciences (TUMS) and Avicenna Research Institute. Informed consent was obtained from the donors and/or parents of the donors according to guidelines of the Medical Ethics Committee, Ministry of Health, I.R. of Iran. The extraction of teeth and bone marrow aspiration was in the treatment plan of donors. People involved in diagnosis and treatment planning had no participation in the present study.

Additional information

Manijeh Khanmohammadi and Sayeh Khanjani have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani, F., Hooshmand, T., Khanmohammadi, M. et al. Comparative Immunophenotypic Characteristics, Proliferative Features, and Osteogenic Differentiation of Stem Cells Isolated from Human Permanent and Deciduous Teeth with Bone Marrow. Mol Biotechnol 58, 415–427 (2016). https://doi.org/10.1007/s12033-016-9941-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9941-2

Keywords

Navigation