Skip to main content
Log in

Potato Virus M-Like Nanoparticles: Construction and Characterization

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Virus-like particles (VLPs) are multisubunit self-assembly competent protein structures with identical or highly related overall structure to their corresponding native viruses. To construct a new filamentous VLP carrier, the coat protein (CP) gene from potato virus M (PVM) was amplified from infected potato plants, cloned, and expressed in Escherichia coli cells. As demonstrated by electron microscopy analysis, the PVM CP self-assembles into filamentous PVM-like particles, which are mostly 100–300 nm in length. Adding short Gly-Ser peptide at the C-terminus of the PVM, CP formed short VLPs, whereas peptide and protein A Z-domain fusions at the CP N-terminus retained its ability to form typical PVM VLPs. The PVM-derived VLP carrier accommodates up to 78 amino acid-long foreign sequences on its surface and can be produced in technologically significant amounts. PVM-like particles are stable at physiological conditions and also, apparently do not become disassembled in high salt and high pH solutions as well as in the presence of EDTA or reducing agents. Despite partial proteolytic processing of doubled Z-domain fused to PVM VLPs, the rabbit IgGs specifically bind to the particles, which demonstrates the functional activity and surface location of the Z-domain in the PVM VLP structure. Therefore, PVM VLPs may be recognized as powerful structural blocks for new human-made nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeltins, A. (2013). Construction and characterization of virus-like particles: a review. Molecular Biotechnology, 53, 92–107.

    Article  CAS  Google Scholar 

  2. Pushko, P., Pumpens, P., & Grens, E. (2013). Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology, 56, 141–165.

    Article  CAS  Google Scholar 

  3. Zhao, Q., Li, S., Yu, H., Xia, N., & Modis, Y. (2013). Virus-like particle-based human vaccines: Quality assessment based on structural and functional properties. Trends in Biotechnology, 31, 654–663.

    Article  Google Scholar 

  4. Jain, N. K., Sahni, N., Kumru, O. S., Joshi, S. B., Volkin, D. B., & Middaugh, C. R. (2014). Formulation and stabilization of recombinant protein based virus-like particle vaccines. Advanced Drug Delivery Reviews,. doi:10.1016/j.addr.2014.10.023.

    Google Scholar 

  5. Liu, F., Ge, S., Li, L., Wu, X., Liu, Z., & Wang, Z. (2012). Virus-like particles: Potential veterinary vaccine immunogens. Research in Veterinary Science, 93, 553–559.

    Article  CAS  Google Scholar 

  6. Haynes, J. R., Cunningham, J., von Seefried, A., Lennick, M., Garvin, R. T., & Shen, S. H. (1986). Development of a genetically-engineered, candidate polio vaccine employing the self assembling properties of the tobacco mosaic virus coat protein. Biotechnology, 4, 637–641.

    Article  CAS  Google Scholar 

  7. Lomonossoff, G. P., & Evans, D. J. (2014). Applications of plant viruses in bionanotechnology. Current Topics in Microbiology and Immunology, 375, 61–87.

    CAS  Google Scholar 

  8. Namba, K., & Stubbs, G. (1986). Structure of tobacco mosaic virus at 3.6 A resolution: Implications for assembly. Science, 231, 1401–1406.

    Article  CAS  Google Scholar 

  9. Kendall, A., McDonald, M., Bian, W., Bowles, T., Baumgarten, S. C., Shi, J., et al. (2008). Structure of flexible filamentous plant viruses. Journal of Virology, 82, 9546–9554.

    Article  CAS  Google Scholar 

  10. Cruz, S. S., Chapman, S., Roberts, A. G., Roberts, I. M., Prior, D. A., & Oparka, K. J. (1996). Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proceedings of the National Academy of Sciences, 93, 6286–6290.

    Article  CAS  Google Scholar 

  11. Denis, J., Majeau, N., Acosta-Ramirez, E., Savard, C., Bedard, M. C., Simard, S., et al. (2007). Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization. Virology, 363, 59–68.

    Article  CAS  Google Scholar 

  12. Kalnciema, I., Skrastina, D., Ose, V., Pumpens, P., & Zeltins, A. (2012). Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Molecular Biotechnology, 52, 129–139.

    Article  CAS  Google Scholar 

  13. Saini, M., & Vrati, S. (2003). A Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like particles induces virus-neutralizing antibodies and protects mice against lethal challenge. Journal of Virology, 77, 3487–3494.

    Article  CAS  Google Scholar 

  14. Turpen, T. H., Reinl, S. J., Charoenvit, Y., Hoffman, S. L., Fallarme, V., & Grill, L. K. (1995). Malaria epitopes expressed on the surface of recombinant tobacco mosaic virus. Nature Biotechnology, 13, 53–57.

    Article  CAS  Google Scholar 

  15. Brown, A. D., Naves, L., Wang, X., Ghodssi, R., & Culver, J. N. (2013). Carboxylate-directed in vivo assembly of virus-like nanorods and tubes for the display of functional peptides and residues. Biomacromolecules, 14, 3123–3129.

    Article  CAS  Google Scholar 

  16. Lee, K. L., Shukla, S., Wu, M., Ayat, N. R., El Sanadi, C. E., Wen, A. M., & Steinmetz, N. F. (2015). Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomaterialia, 19, 166–179.

    Article  CAS  Google Scholar 

  17. Zavriev, S. K., Kanyuka, K. V., & Levay, K. E. (1991). The genome organization of potato virus M RNA. Journal of General Virology, 72, 9–14.

    Article  CAS  Google Scholar 

  18. Tabasinejad, F., Jafarpour, B., Zakiaghl, M., Siampour, M., Rouhani, H., & Mehrvar, M. (2014). Genetic structure and molecular variability of potato virus M populations. Archives of Virology, 159, 2081–2090.

    Article  CAS  Google Scholar 

  19. Brandes, J., Wetter, C., Bagnall, R. H., & Larson, R. H. (1959). Size and shape of the particles of Potato virus S, Potato virus M, and Carnation latent virus. Phytopathology, 49, 443–446.

    Google Scholar 

  20. Veerisetty, V., & Brakke, M. K. (1977). Differentiation of legume carlaviruses based on their biochemical properties. Virology, 83, 226–231.

    Article  CAS  Google Scholar 

  21. Tavantzis, S. M. (1983). Improved purification of two potato carlaviruses. Phytopathology, 73, 190–194.

    Article  Google Scholar 

  22. Naylor, M., Reeves, J., Cooper, J. I., Edwards, M. L., & Wang, H. (2005). Construction and properties of a gene-silencing vector based on Poplar mosaic virus (genus Carlavirus). Journal of Virological Methods, 124, 27–36.

    Article  CAS  Google Scholar 

  23. Eastwell, K. C., & Druffel, K. L. (2012). Complete genome organization of American hop latent virus and its relationship to carlaviruses. Archives of Virology, 157, 1403–1406.

    Article  CAS  Google Scholar 

  24. Wang, R., Wang, G., Zhao, Q., Zhang, Y., An, L., & Wang, Y. (2010). Expression, purification and characterization of the Lily symptomless virus coat protein from Lanzhou Isolate. Virology Journal, 7, 34.

    Article  Google Scholar 

  25. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor.

    Google Scholar 

  26. Louro, D., & Lesemann, D. E. (1984). Use of protein A-gold complex for specific labelling of antibodies bound to plant viruses. I. Viral antigens in suspensions. Journal of Virological Methods, 9, 107–122.

    Article  CAS  Google Scholar 

  27. Nilsson, B., Moks, T., Jansson, B., Abrahmsen, L., Elmblad, A., Holmgren, E., et al. (1987). A synthetic IgG-binding domain based on staphylococcal protein A. Protein Engineering, 1, 107–113.

    Article  CAS  Google Scholar 

  28. Bancroft, J. B., Hiebert, E., Rees, M. W., & Markham, R. (1968). Properties of cowpea chlorotic mottle virus, its protein and nucleic acid. Virology, 34, 224–239.

    Article  CAS  Google Scholar 

  29. Ederth, J., Mandava, C. S., Dasgupta, S., & Sanyal, S. (2009). A single-step method for purification of active His-tagged ribosomes from a genetically engineered Escherichia coli. Nucleic Acids Research, 37, e15.

    Article  Google Scholar 

  30. Routh, A., Domitrovic, T., & Johnson, J. E. (2012). Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. Proceedings of the National Academy of Science of the United States of America, 109, 1907–1912.

    Article  CAS  Google Scholar 

  31. Hirel, P. H., Schmitter, M. J., Dessen, P., Fayat, G., & Blanquet, S. (1989). Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proceedings of the National Academy of Science of the United States of America, 86, 8247–8251.

    Article  CAS  Google Scholar 

  32. Kotiaho, T., Eberlin, M. N., Vainiotalo, P., & Kostiainen, R. (2000). Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. Journal of the American Society for Mass Spectrometry, 11, 526–535.

    Article  CAS  Google Scholar 

  33. Ni, P., Vaughan, R. C., Tragesser, B., Hoover, H., & Kao, C. C. (2014). The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous. Journal of Molecular Biology, 426, 1061–1076.

    Article  CAS  Google Scholar 

  34. Glasgow, J. E., Capehart, S. L., Francis, M. B., & Tullman-Ercek, D. (2012). Osmolyte-mediated encapsulation of proteins inside MS2 viral capsids. ACS Nano, 6, 8658–8664.

    Article  CAS  Google Scholar 

  35. Ahmad, I., Stace-Smith, R., & Wright, N. S. (1985). Some properties of potato virus M (PVM) in crude sap and in pure preparations. Pertanika, 8, 73–77.

    Google Scholar 

  36. Brown, N. L., Bottomley, S. P., Scawen, M. D., & Gore, M. G. (1998). A study of the interactions between an IgG-binding domain based on the B domain of staphylococcal protein A and rabbit IgG. Molecular Biotechnology, 10, 9–16.

    Article  CAS  Google Scholar 

  37. Werner, S., Marillonnet, S., Hause, G., Klimyuk, V., & Gleba, Y. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proceedings of the National Academy of Science of the United States of America, 103, 17678–17683.

    Article  CAS  Google Scholar 

  38. Brown, S. D., Fiedler, J. D., & Finn, M. G. (2009). Assembly of hybrid bacteriophage Qβ virus-like particles. Biochemistry, 48, 11155–11157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Dr. P. Pumpens for critical reading of the manuscript and suggestions, Prof. Dr. K. Tars and Dr. A. Kazaks for helpful discussions. G. Grinberga, G. Resevica, and V. Zeltina are acknowledged for their technical assistance. This work was supported by the ERAF Grant 2013/0052/2DP/2.1.1.1.0/13/APIA/VIAA/019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andris Zeltins.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalnciema, I., Balke, I., Skrastina, D. et al. Potato Virus M-Like Nanoparticles: Construction and Characterization. Mol Biotechnol 57, 982–992 (2015). https://doi.org/10.1007/s12033-015-9891-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9891-0

Keywords

Navigation