Skip to main content
Log in

Potato Virus Y-Like Particles as a New Carrier for the Presentation of Foreign Protein Stretches

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Virus-like particle (VLP) technology represents a promising approach for the creation of efficient vaccines and materials for use in nanotechnological applications. For construction of a new carrier for foreign protein sequences, the coat protein (CP) gene from potato virus Y (PVY) was cloned and expressed in Escherichia coli cells. The PVY CP self-assembles into PVY-like particles, as demonstrated by electron microscopy analysis of purified VLP preparations. The PVY CP with an N-terminal insertion of a foreign epitope (preS1) or of a whole protein (rubredoxin) retains its ability to form filamentous particles, whereas adding a foreign sequence to the C-terminus of the PVY CP generates mostly unstructured protein aggregates. This new filamentous plant virus-derived VLP carrier accommodates a foreign protein sequence that is up to 71 amino acids in length on the VLP surface and can be produced in E. coli in preparative amounts. The PVY CP VLPs are stable in physiological conditions, but they are sensitive to EDTA, high salt, and extreme pH. The presence of the preS1 epitope decreases the stability of the chimeric PVY CP particles at elevated temperatures. Mice that are immunized with chimeric PVY CP particles carrying preS1 epitopes exhibit a strong anti-preS1 immune response, even in the absence of adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pumpens, P., & Grens, E. (2002). Artificial genes for chimeric virus-like particles. In Y. E. Khudyakov & H. A. Fields (Eds.), Artificial DNA: Methods and applications (pp. 249–327). Boca Raton: CRC Press.

    Google Scholar 

  2. Pumpens, P., Ulrich, R., Sasnauskas, K., Kazaks, A., Ose, V., & Grens, E. (2009). Construction of novel vaccines on the basis of the virus-like particles: Hepatitis B virus proteins as vaccine carriers. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 205–248). Boca Raton: CRC Press.

    Google Scholar 

  3. Kazaks, A., & Voronkova, T. (2009). Papillomavirus-derived virus-like particles. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 277–297). Boca Raton: CRC Press.

    Google Scholar 

  4. Bachmann, M. F., Hengartner, H., & Zinkernagel, R. M. (1995). T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction. European Journal of Immunology, 25, 3445–3451.

    Article  CAS  Google Scholar 

  5. Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G. A., Li, J., Mottram, P. L., et al. (2004). Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. Journal of Immunology, 173, 3148–3154.

    CAS  Google Scholar 

  6. Bachmann, M. F., Rohrer, U. H., Kündig, T. M., Bürki, K., Hengartner, H., & Zinkernagel, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science, 262, 1448–1451.

    Article  CAS  Google Scholar 

  7. Chow, M., Yabrov, R., Bittle, J., Hogle, J., & Baltimore, D. (1985). Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies. Proceedings of the National Academy of Science of the United States of America, 82, 910–914.

    Article  CAS  Google Scholar 

  8. Partidos, C. D., Obeid, O. E., & Steward, M. W. (1992). Antibody responses to non-immunogenic synthetic peptides induced by co-immunization with immunogenic peptides. Immunology, 77, 262–266.

    CAS  Google Scholar 

  9. Ulmer, J. B., Valley, U., & Rappuoli, R. (2006). Vaccine manufacturing: challenges and solutions. Nature Biotechnology, 24, 1377–1383.

    Article  CAS  Google Scholar 

  10. Zeltins, A. (2009). Plant virus biotechnology platforms for expression of medicinal proteins. In Y. E. Khudyakov (Ed.), Medicinal protein engineering (pp. 481–517). Boca Raton: CRC Press.

    Google Scholar 

  11. Berger, P. H., Adams, M. J., Barnett, O. W., Brunt, A. A., Hammond, J., Hill, J. H., et al. (2005). Family Potyviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses (pp. 819–841). London: Elsevier/Academic Press.

    Google Scholar 

  12. Saini, M., & Vrati, S. (2003). A Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like particles induces virus-neutralizing antibodies and protects mice against lethal challenge. Journal of Virology, 77, 3487–3494.

    Article  CAS  Google Scholar 

  13. Shukla, D. D., Strike, P. M., Tracy, S. L., Gough, K. H., & Ward, C. W. (1988). The N- and C-termini of the coat proteins of potyviruses are surface located and the N-terminus contains the major virus-specific epitopes. Journal of General Virology, 69, 1497–1508.

    Article  CAS  Google Scholar 

  14. Anindya, R., & Savithri, H. S. (2003). Surface-exposed amino- and carboxy-terminal residues are crucial for the initiation of assembly in Pepper vein banding virus: A flexuous rod-shaped virus. Virology, 316, 325–336.

    Article  CAS  Google Scholar 

  15. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor.

    Google Scholar 

  16. Sominskaya, I., Skrastina, D., Dislers, A., Vasiljev, D., Mihailova, M., Ose, V., et al. (2010). Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. Clinical and Vaccine Immunology, 17, 1027–1033.

    Article  CAS  Google Scholar 

  17. Bichko, V., Pushko, P., Dreilina, D., Pumpen, P., & Gren, E. (1985). Subtype ayw variant of hepatitis B virus. DNA primary structure analysis. FEBS Letters, 185, 208–212.

    Article  CAS  Google Scholar 

  18. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Lavinder, J. J., Hari, S. B., Sullivan, B. J., & Magliery, T. J. (2009). High-throughput thermal scanning: A general, rapid dye-binding thermal shift screen for protein engineering. Journal of the American Chemical Society, 131, 3794–3795.

    Article  CAS  Google Scholar 

  20. Sominskaya, I., Paulij, W., Jansons, J., Sobotta, D., Dreilina, D., Sunnen, C., et al. (2002). Fine-mapping of the B-cell epitope domain at the N-terminus of the preS2 region of the hepatitis B surface antigen. Journal of Immunological Methods, 260, 251–261.

    Article  CAS  Google Scholar 

  21. Pontisso, P., Ruvoletto, M. G., Gerlich, W. H., Heermann, K. H., Bardini, R., & Alberti, A. (1989). Identification of an attachment site for human liver plasma membranes on hepatitis B virus particles. Virology, 173, 522–530.

    Article  CAS  Google Scholar 

  22. Glais, L., Tribodet, M., & Kerlan, C. (2002). Genomic variability in Potato potyvirus Y (PVY): Evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Archives of Virology, 147, 363–378.

    Article  CAS  Google Scholar 

  23. Ghabrial, S. A., Smith, H. A., Parks, T. D., & Dougherty, W. G. (1990). Molecular genetic analyses of the soybean mosaic virus NIa proteinase. Journal of General Virology, 71, 1921–1927.

    Article  CAS  Google Scholar 

  24. Hirel, P. H., Schmitter, M. J., Dessen, P., Fayat, G., & Blanquet, S. (1989). Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proceedings of the National Academy of Science of the United States of America, 86, 8247–8251.

    Article  CAS  Google Scholar 

  25. Varma, A., Gibbs, A. J., Woods, R. D., & Finch, J. T. (1968). Some observations on the structure of the filamentous particles of several plant viruses. Journal of General Virology, 2, 107–114.

    Article  CAS  Google Scholar 

  26. Voloudakis, A. E., Malpica, C. A., Aleman-Verdaguer, M. E., Stark, D. M., Fauquet, C. M., & Beachy, R. N. (2004). Structural characterization of Tobacco etch virus coat protein mutants. Archives of Virology, 149, 699–712.

    Article  CAS  Google Scholar 

  27. Werner, S., Marillonnet, S., Hause, G., Klimyuk, V., & Gleba, Y. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proceedings of the National Academy of Science of the United States of America, 103, 17678–17683.

    Article  CAS  Google Scholar 

  28. Glebe, D., Urban, S., Knoop, E. V., Cag, N., Krass, P., Grün, S., et al. (2005). Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes. Gastroenterology, 129, 234–245.

    Article  CAS  Google Scholar 

  29. Day, M. W., Hsu, B. T., Joshua-Tor, L., Park, J. B., Zhou, Z. H., Adams, M. W., et al. (1992). X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Science, 1, 1494–1507.

    Article  CAS  Google Scholar 

  30. Richie, K. A., Teng, Q., Elkin, C. J., & Kurtz, D. M., Jr. (1996). 2D 1H and 3D 1H–15 N NMR of zinc-rubredoxins: Contributions of the beta-sheet to thermostability. Protein Science, 5, 883–894.

    Article  CAS  Google Scholar 

  31. Cruz, S. S., Chapman, S., Roberts, A. G., Roberts, I. M., Prior, D. A., & Oparka, K. J. (1996). Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proceedings of the National Academy of Science of the United States of America, 93, 6286–6290.

    Article  CAS  Google Scholar 

  32. Ryan, M. D., King, A. M. Q., & Thomas, G. P. (1991). Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. Journal of General Virology, 72, 2727–2732.

    Article  CAS  Google Scholar 

  33. Park, M., Kang, K., Park, S., Kim, Y. S., Ha, S. H., Lee, S. W., et al. (2008). Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Applied Microbiology and Biotechnology, 81, 43–49.

    Article  CAS  Google Scholar 

  34. Dechamma, H. J., Ashok Kumar, C., Nagarajan, G., & Suryanarayana, V. V. S. (2008). Processing of multimer FMD virus VP1–2A protein expressed in E. coli into monomers. Indian Journal of Experimental Biology, 46, 760–763.

    CAS  Google Scholar 

  35. Kazaks, A., Lachmann, S., Koletzki, D., Petrovskis, I., Dislers, A., Ose, V., et al. (2002). Stop codon insertion restores the particle formation ability of hepatitis B virus core-hantavirus nucleocapsid protein fusions. Intervirology, 45, 340–349.

    Article  CAS  Google Scholar 

  36. Yan, J. B., Wang, G. Q., Du, P., Zhu, D. X., Wang, M. W., & Jiang, X. Y. (2006). High-level expression and purification of Escherichia coli oligopeptidase B. Protein Expression and Purification, 47, 645–650.

    Article  CAS  Google Scholar 

  37. Denis, J., Majeau, N., Acosta-Ramirez, E., Savard, C., Bedard, M. C., Simard, S., et al. (2007). Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization. Virology, 363, 59–68.

    Article  CAS  Google Scholar 

  38. Fehr, T., Skrastina, D., Pumpens, P., & Zinkernagel, R. M. (1998). T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proceedings of the National Academy of Science of the United States of America, 95, 9477–9481.

    Article  CAS  Google Scholar 

  39. Skrastina, D., Bulavaite, A., Sominskaya, I., Kovalevska, L., Ose, V., Priede, D., et al. (2008). High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine, 26, 1972–1981.

    Article  CAS  Google Scholar 

  40. Tissot, A. C., Renhofa, R., Schmitz, N., Cielens, I., Meijerink, E., Ose, V., et al. (2010). Versatile virus-like particle carrier for epitope based vaccines. PLoS One, 5(3), e9809.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. K. Tars, Dr. A. Kazaks, Dr. A. Dishlers, Dr. I. Sominska, and Dr. I. Balke for helpful discussions. Dr. L. Ignatovica, G. Grinberga, G. Resevica, and V. Zeltina are acknowledged for their technical assistance. This study was supported by State research program No. VP2-1-12, by the ERAF grant 2010/0261/2DP/2.1.1.1.0/10/APIA/VIAA/155 and by the ESF grant No. 1DP/1.1.1.2.0/09/APIA/VIAA/150 to I.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andris Zeltins.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalnciema, I., Skrastina, D., Ose, V. et al. Potato Virus Y-Like Particles as a New Carrier for the Presentation of Foreign Protein Stretches. Mol Biotechnol 52, 129–139 (2012). https://doi.org/10.1007/s12033-011-9480-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9480-9

Keywords

Navigation