Skip to main content
Log in

Identification of Functional Regions in the Rhodospirillum rubrum l-Asparaginase by Site-Directed Mutagenesis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Site-directed mutagenesis of Rhodospirillum rubrum l-asparaginase (RrA) was performed in order to identify sites of the protein molecule important for its therapeutic and physico-chemical properties. Ten multipoint mutant genes were obtained, and five recombinant RrA variants were expressed in E. coli BL21(DE3) cells and isolated as functionally active highly purified proteins. Protein purification was performed using Q-Sepharose and DEAE-Toyopearl chromatography. Overall yield of the active enzymes was 70–80 %, their specific activity at pH 7.4 and 37 °C varied of 140–210 U/mg. l-Glutaminase activity did not exceed 0.01 % of l-asparaginase activity. All RrA mutants showed maximum enzyme activity at pH 9.3–9.5 and 53–58 °C. Km and Vmax values for l-asparagine were evaluated for all mutants. Mutations G86P, D88H, M90K (RrAH), G121L, D123A (RrАI) caused the loss of enzyme activity and confirmed the importance of these sites in the implementation of catalytic functions. Removal of four residues from C-terminal area of the enzyme (RrAK) resulted in the enzyme instability. Mutations D60K, F61L(RrАD), and R118H, G120R(RrАJ) led to the improvement of kinetic parameters and enzyme stabilization. Substitutions E149R, V150P (RrАB) improved antineoplastic and cytotoxic activity of the RrA. A64V, E67K substitutions, especially in combination with E149R, V150P (RrАE), considerably destabilized recombinant enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Avramis, V. I., & Tiwari, P. N. (2006). Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. International Journal of Nanomedicine, 1(3), 241–254.

    CAS  Google Scholar 

  2. Howard, J. B., & Carpenter, F. H. (1972). l-Asparaginase from Erwinia carotovora. Journal of Biological Chemistry, 247(4), 1020–1030.

    CAS  Google Scholar 

  3. Khushoo, A., Pal, Y., & Mukherjee, K. J. (2005). Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Applied Microbiology and Biotechnology, 68(2), 189–197.

    Article  CAS  Google Scholar 

  4. Ferrara, M. A., Severino, M. B., Mansure, J. J., Martins, A. S., Oliveira, E. M., Siani, A. C., et al. (2006). Asparaginase production by a recombinant Pichia pastoris strain harbouring Saccharomyces cerevisiae ASP3 gene. Enzyme and Microbial Technology, 39(7), 1457–1463.

    Article  CAS  Google Scholar 

  5. Onishi, Y., Yano, S., Thongsanit, J., Takagi, K., Yoshimune, K., & Wakayama, M. (2011). Expression in Escherichia coli of a gene encoding type II l-asparaginase from Bacillus subtilis, and characterization of its unique properties. Annals of Microbiology, 61(3), 517–524.

    Article  CAS  Google Scholar 

  6. Schwartz, J. H., Reevesi, J. Y., & Broome, J. D. (1966). Two l-asparaginases from E. coli and their action against tumors. Proceedings of the National Academy of Sciences, 56(5), 1516–1519.

    Article  CAS  Google Scholar 

  7. Wink, P. L., Bogdawa, H. M., Renard, G., Chies, J. M., Basso, L. A., & Santos, D. S. (2010). Comparison between two Erwinia carotovora l-asparaginase II constructions: cloning, heterologous expression, purification, and kinetic characterization. Journal of Microbial & Biochemical Technology, 2(1), 13–19.

    Article  CAS  Google Scholar 

  8. Duval, M. (2002). Comparison of Escherichia coli asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children’s Leukemia Group phase 3 trials. Blood, 99(8), 2734–2739.

    Article  CAS  Google Scholar 

  9. Hawkins, D. S., Park, J. R., Thomson, B. G., Felgenhauer, J. L., Holcenberg, J. S., Panosyan, E. H., et al. (2004). Asparaginase pharmacokinetics after intensive polyethylene glycolconjugated l-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10(16), 5335–5341.

    Article  CAS  Google Scholar 

  10. Kotzia, G. A., & Labrou, N. E. (2005). Cloning, expression and characterisation of Erwinia carotovora l-asparaginase. Journal of Biotechnology, 119(4), 309–323.

    Article  CAS  Google Scholar 

  11. Kotzia, G. A., & Labrou, N. E. (2007). l-Asparaginase from Erwinia chrysanthemi 3937: cloning, expression and characterization. Journal of Biotechnology, 127(4), 657–669.

    Article  CAS  Google Scholar 

  12. Palm, G. J., Lubkowski, J., Derst, C., Schleper, S., Röhm, K. H., & Wlodawer, A. (1996). A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant. FEBS Letters, 390(2), 211–216.

    Article  CAS  Google Scholar 

  13. Avramis, V. I., & Panosyan, E. H. (2005). Pharmacokinetic/Pharmacodynamic relations of asparaginase formulations the past, the present and recommendations for the future. Clinical Pharmacokinetics, 44(4), 367–393.

    Article  CAS  Google Scholar 

  14. Pui, C. H., Burghen, G. A., Bowman, W. P., & Aur, R. J. (1981). Risk factors for hyperglycemia in children with leukemia receiving l-asparaginase and prednisone. Journal of Pediatrics, 99(1), 46–50.

    Article  CAS  Google Scholar 

  15. Evans, W. E., Tsiatis, A., Rivera, G., Murphy, S. B., Dahl, G. V., Denison, M., et al. (1982). Anaphylactoid reactions to Escherichia coli and Erwinia asparaginase in children with leukemia and lymphoma. Cancer, 49(7), 1378–1383.

    Article  CAS  Google Scholar 

  16. Priest, J. R., Ramsay, N. K., Steinherz, P. G., Tubergen, D. G., Cairo, M. S., Sitarz, A. L., et al. (1982). A syndrome of thrombosis and hemorrhage complicating l-asparaginase therapy for childhood acute lymphoblastic leukemia. Journal of Pediatrics, 100(6), 984–989.

    Article  CAS  Google Scholar 

  17. Sahu, S., Saika, S., Pai, S. K., & Advani, S. H. (1998). l-asparaginase (Leunase) induced pancreatitis in childhood acute lymphoblastic leukemia. Journal of Pediatric Hematology/oncology, 15(6), 533–538.

    CAS  Google Scholar 

  18. Feinberg, W. M., & Swenson, M. R. (1988). Cerebrovascular complications of l-asparaginase therapy. Neurology, 38(1), 127–133.

    Article  CAS  Google Scholar 

  19. Vrooman, L. M., Supko, J. G., Neuberg, D. S., Asselin, B. L., Athale, U. H., Clavell, L., et al. (2010). Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatric Blood & Cancer, 54(2), 199–205.

    Google Scholar 

  20. Derst, C., Henseling, J., & Röhm, K. H. (2000). Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Science, 9(10), 2009–2017.

    Article  CAS  Google Scholar 

  21. Distasio, J. A., Nredrerman, R. A., Kafkewitz, J., & Goodman, D. (1976). Purification and characterization of l-asparaginase with anti-lymphoma activity from Vibrio succinogenes. Journal of Biological Chemistry, 251(22), 6929–6933.

    CAS  Google Scholar 

  22. Gladilina, Iu A, Sokolov, N. N., & Krasotkina, Iu V. (2009). Cloning, expression and purification of Helicobater pylori l-asparaginase. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 3(1), 89–91.

    Article  Google Scholar 

  23. Mahajan, R. V., Kumar, V., Rajendran, V., Saran, S., Ghosh, P. C., & Saxena, Kumar R. (2014). Purification and characterization of a novel and robust l-asparaginase having Low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PlosOne, 9(6), 1–8.

    Article  Google Scholar 

  24. Bansal, S., Gnaneswari, D., Mishra, P., & Kundu, B. (2010). Structural stability and functional analysis of l-asparaginase from Pyrococcus furiosus. Biochemistry (Moscow), 75(3), 375–381.

    Article  CAS  Google Scholar 

  25. Pokrovskaya, M. V., Pokrovskiy, V. S., Aleksandrova, S. S., Anisimova, N Iu, Adrianov, R. M., Treshchalina, E. M., et al. (2012). Recombinant intracellular Rhodospirillum rubrum l-asparaginase with low l-glutaminase activity and antiproliferative effect. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 6(2), 123–131.

    Article  Google Scholar 

  26. Mezentsev, Yu V, Molnar, A. A., Gnedenko, O. V., Krasotkina, Yu V, Sokolov, N. N., & Ivanov, A. S. (2007). Oligomerization of l-asparaginase from Erwinia carotovora. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 1(1), 58–67.

    Article  Google Scholar 

  27. Aghaiypour, K., Wlodawer, A., & Lubkowski, J. (2001). Do bacterial l-asparaginases utilize a catalytic triad Thr-Tyr-Glu? Biochimica et Biophysica Acta, 1550(2), 117–128.

    Article  CAS  Google Scholar 

  28. Aung, H. P., Bocola, M., Schleper, S., & Röhm, K. H. (2000). Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. Biochimica et Biophysica Acta, 1481(2), 349–359.

    Article  CAS  Google Scholar 

  29. Prakasham, R. S., Hymavathi, M., Rao, C. S., Arepalli, S. K., Rao, J. V., et al. (2010). Evaluation of antineoplastic activity of extracellular asparaginase produced by isolated Bacillus circulans. Applied Biochemistry and Biotechnology, 160(1), 72–80.

    Article  CAS  Google Scholar 

  30. Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnology, 9(61), 1–8.

    Google Scholar 

  31. Green, M. R., Sambrook, J., & Peter, MacCallum (2012). Molecular cloning: a laboratory manual (4th Edn), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press ISBN 978-1-936113-41-5.

  32. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.

    Article  CAS  Google Scholar 

  33. Sedmak, J. J., & Grossberg, S. E. (1977). A rapid, sensitive, and versatile assay for protein using coomassie brilliant blue G250. Analitical Biochemistry, 79(1–2), 544–552.

    Article  CAS  Google Scholar 

  34. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  35. Wriston, J. C., & Yellin, T. O. (1973). l-Asparaginase: a review. Advances in Enzymology and Related Areas of Molecular Biology, 39, 185–248.

    CAS  Google Scholar 

  36. Wade, H. E., Robinson, H. K., & Philips, B. W. (1971). Asparaginase and glutaminase activities of bacteria. Journal of General Microbiology, 69(3), 299–312.

    Article  CAS  Google Scholar 

  37. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., & Jones, K. M. (1986). Data for biochemical research (third edn). OUP, Oxford: Oxford Science Publications. 580.

    Google Scholar 

  38. Jameel, F., Bogner, R., Mauri, F., & Kalonia, D. (1997). Investigation of physicochemical changes to l-asparaginase during freeze-thaw cycling. Journal of Pharmacy and Pharmacology, 49(5), 472–477.

    Article  CAS  Google Scholar 

  39. Abakumova, O., Podobed, O. V., Karalkin, P. A., Kondakova, L. I., & Sokolov, N. N. (2012). Antitumor activity of l-asparaginase from Erwinia carotovora against different human and animal leukemic and solid tumours cell lines. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 6(4), 306–315.

    Google Scholar 

  40. Abakumova, O., Podobed, O. V., Borisova, A. A., Sidoruk, K. V., Aleksandrova, S. S., Omelyaniuk, N. M., et al. (2009). Antitumor activity of L-asparaginase from Yersinia pseudotuberculosis. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 3(2), 198–201.

    Article  Google Scholar 

  41. Winzor, D. J. (2011). Gel filtration: a means for estimating the molecular mass of proteins. Biochemical Journal, 1, 1–3.

    Google Scholar 

  42. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics, 22(2), 195–201.

    Article  CAS  Google Scholar 

  43. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). Signal P 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.

    Article  CAS  Google Scholar 

  44. Liboshi, Y., Papst, P. J., Hunger, S. P., & Terada, N. (1999). l-Asparaginase inhibits the rapamycin-targeted signaling pathway. Biochemical and Biophysical Research Communications, 260(2), 534–539.

    Article  Google Scholar 

  45. Balcao, V. M., Mateo, C., Fernandez, L., Lafuente, R., Malcota, F. X., & Guisan, J. M. (2001). Structural and functional stabilization of l-asparaginase via subunit: immobilization on to highly activated supports. Biotechnology Progress, 17(3), 537–542.

    Article  CAS  Google Scholar 

  46. Libinson, G. S., & Mikhalev, A. V. (1976). Relationship between the magnitude of Km and pH for l-asparaginase. Biochemistry (in Russian), 41(1), 149–152.

    CAS  Google Scholar 

  47. Wehner, A., Harms, E., Jennings, M. P., Beacham, I. R., Derst, C., Bast, P., et al. (1992). Site-specific mutagenesis of Escherichia coli asparaginase II. None of the three histidine residues is required for catalysis. European Journal of Biochemistry, 208(2), 475–480.

    Article  CAS  Google Scholar 

  48. Shifrin, S., Luborsky, S. W., & Grochowski, B. J. (1971). l-Asparaginase from Escherichia coli B. Physicochcmical studies of the dissociation process. Journal of Biological Chemistry, 246, 7708–7714.

    CAS  Google Scholar 

  49. Leung-Toung, R., Li, W., Tam, T. F., & Karimian, K. (2002). Thiol-dependent enzymes and their inhibitors: a review. Current Medical Chemistry, 9(9), 979–1002.

    Article  CAS  Google Scholar 

  50. Hethey, J., Lai, J., Loutet, S., Morgan, M., & Tang, V. (2002). Effects of Tricine, Glycine and Tris buffers on alkaline phosphatase activity. Journal of Experimental Microbiology and Immunology, 2, 33–38.

    Google Scholar 

  51. Ma, Lan, Thomas, T., Tibbitts, S., & Evan, R. K. (1995). Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412 + Asn) at one w of the catalytically important zinc binding sites. Protein Science, 4(8), 1498–1506.

    Article  CAS  Google Scholar 

  52. Gervais, D., & Foote, N. (2014). Recombinant deamidated mutants of Erwinia chrysanthemi L-asparaginase have similar or increased activity compared to wild-type enzyme. Molecular Biotechnology, 56(10), 865–877.

    Article  CAS  Google Scholar 

  53. Derst, C., Henseling, J., & Rohm, K. H. (1992). Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein Engineering, 5(8), 785–789.

    Article  CAS  Google Scholar 

  54. Schubert, D., Derst, C., & Röhm, K. H. (1996). Abstract. Annual ABRF Meeting: Biomolecular Techniques, San Francisco, CA.

  55. Sanches, M., Krauchenco, S., & Polikarpov, I. (2007). Structure, substrate complexation and reaction mechanism of bacterial asparaginases. Current Chemcial Biology, 1(1), 75–86.

    CAS  Google Scholar 

  56. Harms, E., Wehner, A., Aung, H. P., & Rohtn, K. H. (1991). A catalytic role for threonine-I2 of E. coli asparaginase TI as established by sitedirected mutagenesis. FEBS Letters, 285(1,8), 55–58.

    Article  CAS  Google Scholar 

  57. Derst, C., Wehner, A., Specht, V., & Rohm, K.-H. (1994). States and functions of tyrosine residues in Escherichia coli asparaginase II. FEBS European Journal of Biochemistry, 224, 533–540.

    Article  CAS  Google Scholar 

  58. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.

    Article  CAS  Google Scholar 

  59. Wehner, A., Derst, C., Specht, V., Aung, H. P., & Rohm, K. H. (1994). The catalytic mechanism of Escherichia coli asparaginase II. Hoppe-Seyler’s Z. Physiol. Chem., 375, 108.

    Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to Dr. Mikhail A. Eldarov (Centre “Bioengineering” RAS, Moscow, Russia) for his participation in the discussion, constructive suggestions, useful critique of this research work as well as for help with translation of this article. Dr. Vasiliy N. Lazarev’s (Scientific Research Institute of Physical–Chemical Medicine, Moscow, Russia) valuable support and assistance in DNA sequencing and Prof. Ekaterina Kolesanova’s (Orekhovich Institute of Biomedical Chemistry, Moscow, Russia) help with protein oligomerisation studies are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Grishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovskaya, M.V., Aleksandrova, S.S., Pokrovsky, V.S. et al. Identification of Functional Regions in the Rhodospirillum rubrum l-Asparaginase by Site-Directed Mutagenesis. Mol Biotechnol 57, 251–264 (2015). https://doi.org/10.1007/s12033-014-9819-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9819-0

Keywords

Navigation