Skip to main content
Log in

Simultaneous EGFP and Tag Labeling of the β7 Subunit for Live Imaging and Affinity Purification of Functional Human Proteasomes

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The proteasome is a multi-subunit protein complex that serves as a major pathway for intracellular protein degradation, playing important functions in various biological processes. The C-terminus of the β7 (PSMB4) proteasome subunit was tagged with EGFP and with a composite element for affinity purification and TEV cleavage elution (HTBH). When the construct was retrovirally delivered into HeLa cells, virtually all of the β7-EGFP-HTBH fusion protein was found to be incorporated into fully functional proteasomes. This ensured that subcellular localization of the EGFP signal in living HeLa cells could be attributed to β7-EGFP-HTBH within the proteasome complex rather than to free protein. The β7-EGFP-HTBH fusion can, therefore, serve as a valuable tool for in vivo imaging of proteasomes as well as for high-affinity purification of these complexes and associated molecules for subsequent analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DTT:

Dithiothreitol

DMSO:

Dimethyl sulfoxide

PAGE:

Polyacrylamide gel electrophoresis

AMC:

7-Amino-4-methylcoumarin

Suc:

N-Succinyl

TEV:

Tobacco etch virus

References

  1. Konstantinova, I. M., Tsimokha, A. S., & Mittenberg, A. G. (2008). Role of proteasomes in cellular regulation. International Review of Cell and Molecular Biology, 267, 59–124.

    Article  Google Scholar 

  2. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  Google Scholar 

  3. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D., et al. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 386, 463–471.

    Article  CAS  Google Scholar 

  4. Fischer, M., Hilt, W., Richter-Ruoff, B., Gonen, H., Ciechanover, A., & Wolf, D. H. (1994). The 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Letters, 355, 69–75.

    Article  CAS  Google Scholar 

  5. Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82, 373–428.

    CAS  Google Scholar 

  6. Rechsteiner, M., & Hill, C. P. (2005). Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors. Trends in Cell Biology, 15, 27–33.

    Article  CAS  Google Scholar 

  7. Schwarz, K., Eggers, M., Soza, A., Koszinowski, U. H., Kloetzel, P. M., & Groettrup, M. (2000). The proteasome regulator PA28alpha/beta can enhance antigen presentation without affecting 20S proteasome subunit composition. European Journal of Immunology, 30, 3672–3679.

    Article  CAS  Google Scholar 

  8. Masson, P., Lundgren, J., & Young, P. (2003). Drosophila proteasome regulator REGgamma: Transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression. Journal of Molecular Biology, 327, 1001–1012.

    Article  CAS  Google Scholar 

  9. Ustrell, V., Hoffman, L., Pratt, G., & Rechsteiner, M. (2002). PA200, a nuclear proteasome activator involved in DNA repair. EMBO Journal, 21, 3516–3525.

    Article  CAS  Google Scholar 

  10. Khor, B., Bredemeyer, A. L., Huang, C. Y., Turnbull, I. R., Evans, R., Maggi, L. B., Jr, et al. (2006). Proteasome activator PA200 is required for normal spermatogenesis. Molecular and Cellular Biology, 26, 2999–3007.

    Article  CAS  Google Scholar 

  11. Rivett, A. J. (1998). Intracellular distribution of proteasomes. Current Opinion in Immunology, 10, 110–114.

    Article  CAS  Google Scholar 

  12. Wilkinson, C. R., Wallace, M., Morphew, M., Perry, P., Allshire, R., Javerzat, J. P., et al. (1998). Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO Journal, 17, 6465–6476.

    Article  CAS  Google Scholar 

  13. Ogiso, Y., Tomida, A., Kim, H. D., & Tsuruo, T. (1999). Glucose starvation and hypoxia induce nuclear accumulation of proteasome in cancer cells. Biochemical and Biophysical Research Communications, 258, 448–452.

    Article  CAS  Google Scholar 

  14. Kimura, A., Kato, Y., & Hirano, H. (2012). N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry, 51, 8856–8866.

    Article  CAS  Google Scholar 

  15. Wang, X., Chen, C. F., Baker, P. R., Chen, P. L., Kaiser, P., & Huang, L. (2007). Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry, 46, 3553–3565.

    Article  CAS  Google Scholar 

  16. Tsimokha, A. S., Mittenberg, A. G., Kulichkova, V. A., Kozhukharova, I. V., Gause, L. N., & Konstantinova, I. M. (2007). Changes in composition and activities of 26S proteasomes under the action of doxorubicin—apoptosis inductor of erythroleukemic K562 cells. Cell Biology International, 31, 338–348.

    Article  CAS  Google Scholar 

  17. Nothwang, H. G., Tamura, T., Tanaka, K., & Ichihara, A. (1994). Sequence analyses and inter-species comparisons of three novel human proteasomal subunits, HsN3, HsC7-I and HsC10-II, confine potential proteolytic active-site residues. Biochimica et Biophysica Acta, 1219, 361–368.

    Article  CAS  Google Scholar 

  18. McMillan, E. M., & Quadrilatero, J. (2011). Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 300, R531–R543.

    CAS  Google Scholar 

  19. Orlowski, M., Cardozo, C., Hidalgo, M. C., & Michaud, C. (1991). Regulation of the peptidylglutamyl-peptide hydrolyzing activity of the pituitary multicatalytic proteinase complex. Biochemistry, 30, 5999–6005.

    Article  CAS  Google Scholar 

  20. Kisselev, A. F., Callard, A., & Goldberg, A. L. (2006). Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. Journal of Biological Chemistry, 281, 8582–8590.

    Article  CAS  Google Scholar 

  21. Wojcik, C., & DeMartino, G. N. (2003). Intracellular localization of proteasomes. International Journal of Biochemistry & Cell Biology, 35, 579–589.

    Article  CAS  Google Scholar 

  22. Enenkel, C., Lehmann, A., & Kloetzel, P. M. (1998). Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO Journal, 17, 6144–6154.

    Article  CAS  Google Scholar 

  23. Reits, E. A., Benham, A. M., Plougastel, B., Neefjes, J., & Trowsdale, J. (1997). Dynamics of proteasome distribution in living cells. EMBO Journal, 16, 6087–6094.

    Article  CAS  Google Scholar 

  24. Baldin, V., Militello, M., Thomas, Y., Doucet, C., Fic, W., Boireau, S., et al. (2008). A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking. Molecular Biology of the Cell, 19, 1706–1716.

    Article  CAS  Google Scholar 

  25. Miles, E. L., O’Gorman, C., Zhao, J., Samuel, M., Walters, E., Yi, Y. J., et al. (2013). Transgenic pig carrying green fluorescent proteasomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 6334–6339.

    Article  CAS  Google Scholar 

  26. Apcher, G. S., Maitland, J., Dawson, S., Sheppard, P., & Mayer, R. J. (2004). The alpha4 and alpha7 subunits and assembly of the 20S proteasome. FEBS Letters, 569, 211–216.

    Article  CAS  Google Scholar 

  27. Moiseeva, T. N., Bottrill, A., Melino, G., & Barlev, N. A. (2013). DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget, 4, 1338–1348.

    Google Scholar 

  28. Livinskaya, V. A., Barlev, N. A., & Nikiforov, A. A. (2014). Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits. Protein Expression and Purification, 97C, 37–43.

    Article  Google Scholar 

  29. Brooks, P., Murray, R. Z., Mason, G. G., Hendil, K. B., & Rivett, A. J. (2000). Association of immunoproteasomes with the endoplasmic reticulum. Biochemical Journal, 352(Pt 3), 611–615.

    Article  CAS  Google Scholar 

  30. Fabunmi, R. P., Wigley, W. C., Thomas, P. J., & DeMartino, G. N. (2001). Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. Journal of Cell Science, 114, 29–36.

    CAS  Google Scholar 

  31. Huber, E. M., Basler, M., Schwab, R., Heinemeyer, W., Kirk, C. J., Groettrup, M., et al. (2012). Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell, 148, 727–738.

    Article  CAS  Google Scholar 

  32. Loscher, M., Fortschegger, K., Ritter, G., Wostry, M., Voglauer, R., Schmid, J. A., et al. (2005). Interaction of U-box E3 ligase SNEV with PSMB4, the beta7 subunit of the 20 S proteasome. Biochemical Journal, 388, 593–603.

    Article  Google Scholar 

  33. Olink-Coux, M., Arcangeletti, C., Pinardi, F., Minisini, R., Huesca, M., Chezzi, C., et al. (1994). Cytolocation of prosome antigens on intermediate filament subnetworks of cytokeratin, vimentin and desmin type. Journal of Cell Science, 107(Pt 3), 353–366.

    CAS  Google Scholar 

  34. Enenkel, C., Lehmann, A., & Kloetzel, P. M. (1999). GFP-labelling of 26S proteasomes in living yeast: Insight into proteasomal functions at the nuclear envelope/rough ER. Molecular Biology Reports, 26, 131–135.

    Article  CAS  Google Scholar 

  35. Lafarga, M., Fernandez, R., Mayo, I., Berciano, M. T., & Castano, J. G. (2002). Proteasome dynamics during cell cycle in rat Schwann cells. Glia, 38, 313–328.

    Article  Google Scholar 

  36. Kiyomiya, K., Satoh, J., Horie, H., Kurebe, M., Nakagawa, H., & Matsuo, S. (2002). Correlation between nuclear action of anthracycline anticancer agents and their binding affinity to the proteasome. International Journal of Oncology, 21, 1081–1085.

    CAS  Google Scholar 

  37. Mason, G. G., Hendil, K. B., & Rivett, A. J. (1996). Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity. European Journal of Biochemistry, 238, 453–462.

    Article  CAS  Google Scholar 

  38. Guerrero, C., Tagwerker, C., Kaiser, P., & Huang, L. (2006). An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Molecular and Cellular Proteomics, 5, 366–378.

    Article  CAS  Google Scholar 

  39. Moiseeva, T. N., Fedorova, O. A., Tsimokha, A. S., Mittenberg, A. G., & Barlev, N. A. (2010). Effect of ubiquitination on peptidase activities of proteasomes in genotoxic stress. Doklady Biochemistry and Biophysics, 435, 307–311.

    Article  CAS  Google Scholar 

  40. Kulichkova, V. A., Tsimokha, A. S., Fedorova, O. A., Moiseeva, T. N., Bottril, A., Lezina, L., et al. (2010). 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle, 9, 840–849.

    Article  CAS  Google Scholar 

  41. Zaikova, Y. Y., Kulichkova, V. A., Ermolaeva, Y. B., Bottrill, A., Barlev, N. A., & Tsimokha, A. S. (2013). Characterization of extracellular proteasomes and its interacting proteins by iTRAQ mass spectrometry. Cell Tissue Biology, 7, 253–265.

    Article  Google Scholar 

  42. Fedorova, O. A., Moiseeva, T. N., Nikiforov, A. A., Tsimokha, A. S., Livinskaya, V. A., Hodson, M., et al. (2011). Proteomic analysis of the 20S proteasome (PSMA3)-interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochemical and Biophysical Research Communications, 416, 258–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Prof. Colyn Crane-Robinson (University of Portsmouth, UK) for manuscript proof-reading, Prof. Lan Huang (University of California, USA) for generously providing the expression construct of the 19S subunit, and Dr. Masaru Okabe (Osaka University, Japan) for providing the pCX-EGFP plasmid. We also thank Mikhail L. Vorobiev and Grigoriy I. Shtein (Institute of Cytology RAS, Russia) for technical assistance with fluorescence microscopy experiments. This work was partly supported by a FEBS Collaborative Experimental Scholarship for Central and Eastern Europe [to AST], the Molecular and Cellular Biology program of the Presidium of the Russian Academy of Sciences [to NAB], and the Russian Foundation for Basic Research [13-02-00923 to ANT, 13-04-01024 to NAB].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna S. Tsimokha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Supplementary material 2 (DOCX 803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulichkova, V.A., Artamonova, T.O., Zaykova, J.J. et al. Simultaneous EGFP and Tag Labeling of the β7 Subunit for Live Imaging and Affinity Purification of Functional Human Proteasomes. Mol Biotechnol 57, 36–44 (2015). https://doi.org/10.1007/s12033-014-9799-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9799-0

Keywords

Navigation