Skip to main content

Analysis of Proteasome-Associated Ubiquitin Ligase Activity

  • Protocol
  • First Online:
Plant Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2581))

  • 930 Accesses

Abstract

The ubiquitin-proteasome system (UPS) is the predominant protein degradation machinery in eukaryotic cells. It is highly conserved among eukaryotes and essential for their survival. Through regulated proteolysis the UPS plays a key role in a myriad of cellular functions, including developmental and stress signaling, cell differentiation, and cell death. Attachment of a ubiquitin chain to a substrate can trigger its recruitment to the proteasome for proteolysis. To efficiently degrade substrates, however, the proteasome employs HECT-type ubiquitin ligases that can further remodel ubiquitin chains of proteasome-captured substrates. It is thought that this remodeling process is necessary to maintain substrate affinity for the proteasome and to completely translocate the substrate into the 20S proteolytic barrel. Here, we describe a protocol for purifying proteasomes and their associated accessory proteins and provide a practical way to detect proteasome-associated E3 ligase activity. This assay is reliable and efficient for assessing the ability of proteasomes to form ubiquitin conjugates and is applicable to a wide range of eukaryotic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  2. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157. https://doi.org/10.1146/annurev-biochem-060815-014922

    Article  CAS  PubMed  Google Scholar 

  3. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590. https://doi.org/10.1146/annurev.arplant.55.031903.141801

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Q, Liu L, Xie Q (2012) In vitro protein ubiquitination assay. Methods Mol Biol 876:163–172. https://doi.org/10.1007/978-1-61779-809-2_13

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Q, Tian M, Li Q, Cui F, Liu L, Yin B, Xie Q (2013) A plant-specific in vitro ubiquitination analysis system. Plant J 74(3):524–533. https://doi.org/10.1111/tpj.12127

    Article  CAS  PubMed  Google Scholar 

  6. Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96(5):635–644. https://doi.org/10.1016/s0092-8674(00)80574-7

    Article  CAS  PubMed  Google Scholar 

  7. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. https://doi.org/10.1146/annurev.biochem.78.081507.101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt M, Hanna J, Elsasser S, Finley D (2005) Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 386(8):725–737. https://doi.org/10.1515/BC.2005.085

    Article  CAS  PubMed  Google Scholar 

  9. Furniss JJ, Grey H, Wang Z, Nomoto M, Jackson L, Tada Y, Spoel SH (2018) Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity. PLoS Pathog 14(11):e1007447. https://doi.org/10.1371/journal.ppat.1007447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127(7):1401–1413. https://doi.org/10.1016/j.cell.2006.09.051

    Article  CAS  PubMed  Google Scholar 

  11. Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sci U S A 97(6):2497–2502. https://doi.org/10.1073/pnas.060025497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aviram S, Kornitzer D (2010) The ubiquitin ligase Hul5 promotes proteasomal processivity. Mol Cell Biol 30(4):985–994. https://doi.org/10.1128/MCB.00909-09

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Orosa-Puente B, Nomoto M, Grey H, Potuschak T, Matsuura T, Mori IC, Tada Y, Genschik P, Spoel SH (2021) Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators. bioRxiv:2021.2010.2004.462757. https://doi.org/10.1101/2021.10.04.462757

  14. Zhang D, Raasi S, Fushman D (2008) Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J Mol Biol 377(1):162–180. https://doi.org/10.1016/j.jmb.2007.12.029

    Article  CAS  PubMed  Google Scholar 

  15. Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20(5):687–698. https://doi.org/10.1016/j.molcel.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  16. Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57–70. https://doi.org/10.1385/1-59259-895-1:057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This protocol was developed with funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 678511) and the Horizon Europe programme (grant agreement No. 101001137), the Biotechnology and Biological Sciences Research Council (BBSRC; grant no. BB/S016767/1), and a Royal Society University Research Fellowship (grant no. UF140600) to S.H.S, while Z.W. was funded by a PhD studentship from the Darwin Trust of Edinburgh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beatriz Orosa-Puente or Steven H. Spoel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Z., Orosa-Puente, B., Spoel, S.H. (2023). Analysis of Proteasome-Associated Ubiquitin Ligase Activity. In: Lois, L.M., Trujillo, M. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 2581. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2784-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2784-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2783-9

  • Online ISBN: 978-1-0716-2784-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics