Skip to main content
Log in

Hydrophobic Substitution of Surface Residues Affects Lipase Stability in Organic Solvents

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A novel lipase has been recently isolated from a local Pseudomonas sp. (GQ243724). In the present study, we have tried to increase the organic solvent stability of this lipase using site-directed mutagenesis. Eight variants N219L, N219I, N219P, N219A, N219R, N219D, S251L, and S251K were designed to change the surface hydrophobicity of this enzyme with respect to the wild-type. Among these variants, the stability of N219L and N219I significantly increased in the presence of all tested organic solvents, whereas two mutants (N219R and N219D) significantly exhibited decreased stabilities in all the organic solvent studied, suggesting that improvement of hydrophobic patches on the enzyme surface enhances the stability in organic media. Furthermore, replacing Ser251 with hydrophobic residues on the enzyme surface dramatically diminished its stability in the tested condition. In spite of the distance of the mutated sites from the active site, the values of k cat and K m were affected. Finally, structural analysis of the wild-type and mutated variants was carried out in the presence and absence of some organic solvents using circular dichroism and fluorescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold, F. H. (1990). Enzyme engineering for non-aqueous media. Trends in Biotechnology, 8, 244–249.

    Article  CAS  Google Scholar 

  2. Doukyu, N., & Ogino, H. (2010). Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.

    Article  CAS  Google Scholar 

  3. Ogino, H., Uchiho, T., Doukyu, N., Yasuda, M., Ishimi, k, & Ishikawa, H. (2007). Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochemical and Biophysical Research Communications, 358, 1028–1033.

    Article  CAS  Google Scholar 

  4. Arnold, F. H. (1988). Protein design for non-aqueous solvents. Protein Engineering, 2, 21–25.

    Article  CAS  Google Scholar 

  5. Gupta, A., Ray, S., Kapoor, S., & Khare, S. K. (2008). Solvent-stable Pseudomonas aeruginosa PseA protease gene: Identification, molecular characterization, phylogenetic and bioinformatic analysis to study reasons for solvent stability. Journal of Molecular Microbiology and Biotechnology, 15, 234–243.

    Article  CAS  Google Scholar 

  6. Gaur, R., Grover, T., Sharma, R., Kapour, S., & Khare, S. (2010). Purification and characterization of a solvent stable aminopeptidase from Pseudomonas aeruginosa: Cloning and analysis of amino peptidase gene conferring solvent stability. Process Biochemistry, 45, 757–764.

    Article  CAS  Google Scholar 

  7. Chakravorty, D., Parameswaran, S., Dubey, V. K., & Patra, S. (2012). Unraveling the rationale behind organic solvent stability of lipases. Applied Biochemistry and Biotechnology, 167, 439–461.

    Article  CAS  Google Scholar 

  8. Tripathi, M. K., Roy, U., Jinwal, U. K., Jain, S. K., & Roy, P. K. (2004). Cloning, sequencing and structural features of a novel Streptococcus lipase. Enzyme and Microbial Technology, 34, 437–445.

    Article  CAS  Google Scholar 

  9. Yu, M., Qin, S., & Tan, T. (2007). Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Process Biochemistry, 42, 384–391.

    Article  CAS  Google Scholar 

  10. Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., & Sarai, A. (2002). Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations. Biopolymers, 64, 210–220.

    Article  CAS  Google Scholar 

  11. Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K., & Sarai, A. (2004). Protherm, version 4.0. Thermodynamic database for proteins and mutants. Nucleic Acids Research, 32, D120–D121.

    Article  CAS  Google Scholar 

  12. Akbari, N., Daneshjoo, S., Akbari, J., & Khajeh, K. (2011). Isolation, characterization and catalytic properties of a novel lipase which is activated in ionic liquids and organic solvents. Applied Biochemistry and Biotechnology, 165, 785–794.

    Article  CAS  Google Scholar 

  13. Akbari, N., Khajeh, K., Rezaie, S., Mirdamadi, S., & Shavandi, M. (2009). High level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expression and Purification, 70, 75–80.

    Article  Google Scholar 

  14. Nardini, M., Lang, D. A., Liebeton, K., Jaeger, K. E., & Dijkstra, B. W. (2000). Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. Journal of Biological Chemistry, 275, 31219–31225.

    Article  CAS  Google Scholar 

  15. Martinez, P., Van Dam, M. E., Robinson, A. C., Chen, K., & Arnold, F. H. (1992). Stabilization of subtilisin E in organic solvents by site-directed mutagenesis. Biotechnology and Bioengineering, 39, 141–147.

    Article  CAS  Google Scholar 

  16. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  17. Dantas, G., Corrent, C., Reichow, S. L., Havranek, J. J., Eletr, Z. M., Isern, N. G., et al. (2007). High-resolution structural and thermodynamic analysis of extreme stabilization of human procarboxypeptidase by computational protein design. Journal of Molecular Biology, 366, 1209–1221.

    Article  CAS  Google Scholar 

  18. Kawata, T., & Ogino, H. (2010). Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochemical and Biophysical Research Communications, 400, 348–388.

    Article  Google Scholar 

  19. Yang, S., Zhou, L., Tang, H., Pan, J., Wu, X., Huang, H., et al. (2002). Rational design of a more stable penicillin G acylase against organic cosolvent. Journal of Molecular Catalysis B: Enzymatic, 18, 258–290.

    Article  Google Scholar 

  20. Fisher, C. L., & Pei, G. K. (1997). Modification of a PCR-based site-directed mutagenesis method. BioTechniques, 23, 570–574.

    CAS  Google Scholar 

  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  23. Winkler, U. K., & Stuckman, M. (1979). Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 3, 663–670.

    Google Scholar 

  24. Gupta, N., Rathi, P., & Gupta, R. (2002). Simplified para-nitrophenyl palmitate assay for lipases and esterases. Analytical Biochemistry, 311, 98–99.

    Article  CAS  Google Scholar 

  25. Karadzic, I., Masui, A., Zivkovic, L. I., & Fujiwara, N. (2006). Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metal working fluid. Journal of Bioscience and Bioengineering, 102, 82–89.

    Article  CAS  Google Scholar 

  26. Eftink, M. R., & Ghiron, C. A. (1977). Exposure of tryptophanyl residues and protein dynamics. Biochemistry, 16, 5546–5551.

    Article  CAS  Google Scholar 

  27. Kelly, S. M., Jess, T. J., & Price, N. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751, 119–139.

    Article  CAS  Google Scholar 

  28. Ogino, H., Nakagawa, S., Shinya, T., Muto, T., Fujimura, M., Yasudo, K., et al. (2000). Purification and characterization of organic solvent-tolerance lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. Journal of Bioscience and Bioengineering, 89, 451–457.

    Article  CAS  Google Scholar 

  29. Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., & Tominaga, Y. (1992). Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. Journal of Biochemistry, 112, 598–603.

    CAS  Google Scholar 

  30. Sharma, A. K., Ti, W., Ari, R. P., & Hoondal, G. (2001). Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp.AG.8. Journal of Basic Microbiology, 41, 363–366.

    Article  CAS  Google Scholar 

  31. Gang, W., Gung, C., & Ming, W. (2011). Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Bacillus cereus BF-3. African Journal of Biotechnology, 10, 13174–13179.

    Google Scholar 

  32. Lakowicz, J. R. (1992). Topics in fluorescence spectroscopy-biological applications (p. 3). New York: Plenum Press.

    Google Scholar 

  33. Figueiredo, K. C. S., Ferraz, H. C., Borges, C. P., & Alves, T. L. M. (2009). Structural stability of myoglobin in organic media. Protein Journal, 28, 224–232.

    Article  CAS  Google Scholar 

  34. Yadavalli, P., & Rao, N. M. (2013). Engineering the loops in a lipase for stability in DMSO. Protein Engineering Design and Selection, 26, 317–324.

    Article  Google Scholar 

  35. Ogino, H., Gemba, Y., Yutori, Y., Doukyu, N., Ishimi, K., & Ishikawa, H. (2007). Stabilities and conformational transitions of various proteases in the presence of an organic solvent. Biotechnology Progress, 23, 155–161.

    Article  CAS  Google Scholar 

  36. Chandrayan, S. K., Dhaunta, N., & Guptasarma, p. (2008). Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: Retention of structure and lipase/esterase activity in the presence of water-miscible organic solvents at high temperatures. Protein Expression and Purification, 59, 327–333.

    Article  CAS  Google Scholar 

  37. Cowan, D. A. (1977). Thermophilic proteins: Stability and function in aqueous and organic solvents. Comparative Biochemistry and Physiology, 118A, 429–438.

    Google Scholar 

  38. Hao, J., & Berry, A. (2004). A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also show increased stability in organic solvents. Protein Engineering, Design and Selection, 17, 689–697.

    Article  CAS  Google Scholar 

  39. Vasquez-Figueroa, E., Yah, V., Broering, J. M., Chaparro-Riggers, J. F., & Bommarius, A. S. (2008). Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Engineering, Design and Selection, 21, 673–680.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Research Council of the University of Tehran and Tarbiat Modares University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahin Ahmadian or Khosro Khajeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsef Shokri, M., Ahmadian, S., Akbari, N. et al. Hydrophobic Substitution of Surface Residues Affects Lipase Stability in Organic Solvents. Mol Biotechnol 56, 360–368 (2014). https://doi.org/10.1007/s12033-013-9716-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9716-y

Keywords

Navigation