Skip to main content
Log in

Unraveling the Rationale Behind Organic Solvent Stability of Lipases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Organic solvent-stable lipases have pronounced impact on industrial economy as they are involved in synthesis by esterification, interesterification, and transesterification. However, very few of such natural lipases have been isolated till date. A study of the recent past provided few pillars to rely on for this work. The three-dimensional structure, inclusive of the surface and active site, of 29 organic solvent-stable lipases was analyzed by subfamily classification and protein solvent molecular docking based on fast Fourier transform correlation approach. The observations revealed that organic solvent stability of lipases is their intrinsic property and unique with respect to each lipase. In this paper, factors like surface distribution of charged, hydrophobic, and neutral residues, interaction of solvents with catalytically immutable residues, and residues interacting with essential water molecules required for lipase activity, synergistically and by mutualism contribute to render a stable lipase organic solvent. The propensity of surface charge in relation to stability in organic solvents by establishing repulsive forces to exclude solvent molecules from interacting with the surface and prohibiting the same from gaining entry to the protein core, thus stabilizing the active conformation, is a new finding. It was also interesting to note that lipases having equivalent surface-exposed positive and negative residues were stable in a wide range of organic solvents, irrespective of their LogP values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASA:

Accessible surface area

SE:

Surface exposed

References

  1. Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16(9), 396–403.

    Article  CAS  Google Scholar 

  2. Ogino H. (2008) Protein adaptation in extremophiles. In: Siddiqui K.S., Thomas T (eds). Nova Science, New York, pp. 193–236.

  3. Hun, C. J., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. A. (2003). Newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochemical Engineering Journal, 15(2), 147–151.

    Article  CAS  Google Scholar 

  4. Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering, 91, 109–116.

    CAS  Google Scholar 

  5. Secundo, F., & Carrea, G. (2002). Lipase activity and conformation in neat organic solvents. Journal of Molecular Catalysis B: Enzymatic, 19, 93–102.

    Article  Google Scholar 

  6. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235–251.

    Article  CAS  Google Scholar 

  7. Cardenas, F., de Castro, M. S., Sanchez-Montero, J. M., Sinisterra, J. V., Valmaseda, M., Elson, S. W., et al. (2001). Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme and Microbial Technology, 28, 145–154.

    Article  CAS  Google Scholar 

  8. Fang, Y., Lu, Z., Lv, F., Bie, X., Liu, S., Ding, Z., et al. (2006). Newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase. Current Microbiology, 53(6), 510–515.

    Article  CAS  Google Scholar 

  9. Timasheff, S. N. (1993). The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annual Review of Biophysics and Biomolecular Structure, 22, 67–97.

    Article  CAS  Google Scholar 

  10. Schulze, B., & Klibanov, A. M. (1991). Inactivation and stabilization of stabilizing in neat organic solvents. Biotechnology and Bioengineering, 38(9), 1001–1006.

    Article  CAS  Google Scholar 

  11. Martinez, P., & Arnold, F. H. (1991). Surface charge substitutions increase the stability of alpha- lytic protease in organic solvents. Journal of the American Chemical Society, 113(16), 6336–6337.

    Article  CAS  Google Scholar 

  12. Kumar, M., Thakur, V., & Raghava, G. P. S. (2010). COPid: composition based protein identification. In Silico Biology, 8, 11.

    Google Scholar 

  13. Kelil, A., Wang, S., Brzezinski, R., & Fleury, A. (2007). CLUSS: clustering of protein sequences based on a new similarity measure. BMC Bioinformatics, 8, 1–19.

    Article  Google Scholar 

  14. Roy, A., Kucukural, A., & Yang, Z. (2009). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738.

    Article  Google Scholar 

  15. Ahmad, S., Gromiha, M. M., Fawareh, H., & Sarai, A. (2004). ASAView: solvent accessibility graphics for proteins. BMC Bioinformatics, 5, 51.

    Article  Google Scholar 

  16. Pavelka, A., Chovancova, E., & Damborsky, J. (2009). HotSpot wizard: a web server for identification of hot spots in protein engineering. Nucl Acids Res, 37, W376–W383.

    Article  CAS  Google Scholar 

  17. Brenke, R., Kozakov, D., Chuang, G.-Y., Beglov, D., Mattos, C., & Vajda, S. (2009). Fragment-based identification of druggable "hot spots" of proteins using Fourier domain correlation. Bioinformatics, 25(5), 621–627.

    Article  CAS  Google Scholar 

  18. Díaz-García, M. E., & Valencia-González, M. J. (1995). Enzyme catalysis in organic solvents: a promising field for optical biosensing. Talanta, 42(11), 1763–1773.

    Article  Google Scholar 

  19. Kuntz, I. D., & Kauzmann, W. (1974). Hydration of proteins and polypeptides. Advances in Protein Chemistry, 28, 239–345.

    Article  CAS  Google Scholar 

  20. Valivety, R. H., Halling, P. J., & Macrae, A. R. (1992). Reaction rate with lipase catalyst shows similar dependence on water activity in different organic solvents. Biochimica et Biophysica Acta, 1118, 218–222.

    Article  CAS  Google Scholar 

  21. Arakawa, T., Kita, Y., & Timasheff, S. N. (2007). Protein precipitation and denaturation by dimethyl sulfoxide. Biophysical Chemistry, 131, 62–70.

    Article  CAS  Google Scholar 

  22. Nagao, T., Shimada, Y., Sugihara, A., & Tominaga, Y. (2002). Increase in stability of Fusarium heterosporum lipase. Journal of Molecular Catalysis B: Enzymatic, 17, 125–132.

    Article  CAS  Google Scholar 

  23. Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., & Tominaga, Y. (1992). Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. Journal of Biochemistry, 112(5), 598–603.

    CAS  Google Scholar 

  24. Choo, D. W., Kurihara, T., Suzuki, T., Soda, K., & Esaki, N. (1998). A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Applied and Environmental Microbiology, 64(2), 486–491.

    CAS  Google Scholar 

  25. Yan, J., Yang, J., Xu, L., & Yan, Y. (2007). Gene cloning, overexpression and characterization of a novel organic solvent tolerant and thermostable lipase from Galactomyces geotrichum Y05. Journal of Molecular Catalysis B: Enzymatic, 49, 28–35.

    Article  CAS  Google Scholar 

  26. Yu, M., Qin, S., & Tan, T. (2007). Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Protein Biochemistry, 42, 384–391.

    Article  CAS  Google Scholar 

  27. Lescic, I., Vukelic, B., Elenkov, M. M., Saenger, W., & Abramic, M. (2001). Substrate specificity and effects of water-miscible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus. Enzyme and Microbial Technology, 29, 548–553.

    Article  CAS  Google Scholar 

  28. Soliman, N. A., Knoll, M., Abdel-Fattah, Y., Schmid, R. D., & Lange, S. (2007). Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Protein Biochemistry, 42(7), 1090–1100.

    Article  CAS  Google Scholar 

  29. Wasylewski, Z., & Kozik, A. (1979). Protein–non-ionic detergent interaction. Interaction of bovine serum albumin with alkyl glucosides studied by equilibrium dialysis and infrared spectroscopy. European Journal of Biochemistry, 95, 121–126.

    Article  CAS  Google Scholar 

  30. Lad, M. D., Ledger, V. M., Briggs, B., Green, R. J., & Frazier, R. A. (2003). Analysis of the SDS–lysozyme binding isotherm. Langmuir, 19(12), 5098–5103.

    Article  CAS  Google Scholar 

  31. Salameh, M. A., & Wiegel, J. (2010). Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica. Open Biochemical Journal, 4, 22–28.

    Article  CAS  Google Scholar 

  32. Anfinsen, C.B. (1970). Advances in protein chemistry. In: Richards, F.M. (ed). Academic Press, London, vol. 24, pp. 41.

  33. Gekko, K., & Timasheff, S. N. (1981). Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures. Biochemistry, 20, 4667–4676.

    Article  CAS  Google Scholar 

  34. Gekko, K., Ohmae, E., Kameyama, K., & Takagi, T. (1998). Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1387(1–2), 195–205.

    Article  CAS  Google Scholar 

  35. Gromiha, M. M., Santhosh, C., & Ahmad, S. (2004). Structural analysis of cation-pi interactions in DNA binding proteins. International Journal of Biological Macromolecules, 34, 203–211.

    Article  CAS  Google Scholar 

  36. Irun, M. P., Maldonado, S., & Sancho, J. (2001). Stabilization of apoflavodoxin by replacing hydrogen-bonded charged Asp or Glu residues by the neutral isosteric Asn or Gln. Protein Engineering, 14(3), 173–181.

    Article  CAS  Google Scholar 

  37. Madan, B., & Mishra, P. (2009). Overexpression, purification and characterization of organic solvent stable lipase from Bacillus licheniformis RSP-09. Journal of Molecular Microbiology and Biotechnology, 17, 118–123.

    Article  CAS  Google Scholar 

  38. Quyen, D. T., Nguyen, T. T., Le, T. T., Kim, H. K., Oh, T. K., & Lee, J. K. (2004). A novel lipase/chaperone pair from Ralstonia sp. M1: analysis of the folding interaction and evidence for gene loss in R. solanacearum. Molecular Genetics and Genomics, 272(5), 538–549.

    Article  CAS  Google Scholar 

  39. Gulati, R., Saxena, R. K., Gupta, R., Yadav, R. P., & Davidson, W. S. (1999). Parametric optimization of Aspergillus terreus lipase production and its potential in ester synthesis. Protein Biochemistry, 35(5), 459–464.

    Article  Google Scholar 

  40. Zhang, M., Stauffacher, C. V., Linand, D., & Etten, R. L. (1998). Crystal structure of a human low molecular weight phosphotyrosyl phosphatase implications for substrate specificity. Journal of Biological Chemistry, 273, 21714–21720.

    Article  CAS  Google Scholar 

  41. Zhao, L. L., Xua, J. H., Zhaoa, J., Pana, J., & Wangb, Z. L. (2008). Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Protein Biochemistry, 43(6), 626–633.

    Article  CAS  Google Scholar 

  42. Tripathi, M. K., Roy, U., Jinwal, U. K., Jain, S. K., & Roy, P. K. (2004). Cloning, sequencing and structural features of a novel Streptococcus lipase. Enzyme and Microbial Technology, 34, 437–445.

    Article  CAS  Google Scholar 

  43. Dellamora-Ortiz, G. M., Martins, R. C., Rocha, W. L., & Dias, A. P. (1997). Activity and stability of a Rhizomucor miehei lipase in hydrophobic media. Biotechnology and Applied Biochemistry, Pt 1, 31–37.

    Google Scholar 

  44. Sulong, M. R., Abdul Rahman, R. N., Salleh, A. B., & Basri, M. A. (2006). Novel organic solvent tolerant lipase from Bacillus sphaericus 205y: extracellular expression of a novel OST-lipase gene. Protein Expression and Purification, 49(2), 190–195.

    Article  CAS  Google Scholar 

  45. Ogino, H., Miyamoto, M., Yasuda, M., Ishimi, K., & Ishikawa, H. (1999). Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochemical Engineering Journal, 4(1), 1–6.

    Article  CAS  Google Scholar 

  46. Rahman, R. N., Baharum, S. N., Salleh, A. B., & Basri, M. (2005). S5 lipase: an organic solvent tolerant enzyme. Journal of Microbiology, 44(6), 583–590.

    Google Scholar 

  47. Horchani, H., Mosbah, H., Salem, N. B., Gargouri, Y., & Sayari, A. (2008). Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus. Journal of Molecular Catalysis B: Enzymatic, 56(4), 237–245.

    Article  Google Scholar 

  48. Eltaweel, M. A., Rahman, R. A., Salleh, A. B., & Basri, M. (2005). An organic solvent stable lipase from Bacillus sp. strain 42. Annals of Microbiology, 55(3), 187–192.

    CAS  Google Scholar 

  49. Hiol, A., Jonzo, M. D., Rugani, N., Druet, D., Sarda, L., & Comeau, L. C. (2000). Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology, 26, 421–430.

    Article  CAS  Google Scholar 

  50. Tang, Y., Lu, Y., Lu, F., Bie, X., Guo, Y., & Lu, Z. (2009). Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36. Sheng Wu Gong Cheng Xue Bao, 25(12), 1989–1995.

    CAS  Google Scholar 

  51. Sinchaikul, S., Tyndall, J. D. A., Fothergill-Gilmore, L. A., Taylor, P., Phutrakul, S., Chen, S. T., et al. (2002). Expression, purification, crystallization and preliminary crystallographic analysis of a thermostable lipase from Bacillus stearothermophilus P1. Acta Crystallographica, D58, 182–185.

    CAS  Google Scholar 

  52. Schmidt-Dannert, C., Rua, M. L., Atomi, H., & Schmid, R. D. (1996). Thermoalkalophilic lipase of Bacillus thermocatenulatus molecular cloning, nucleotide sequence, purification and some properties. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1301, 105–114.

    Article  Google Scholar 

  53. Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42(1), 153–159.

    Article  Google Scholar 

  54. Liu, S., Fang, Y., Xu, W., Lu, M., Wang, S., & Chen, L. (2009). Screening and identification of a novel organic solvent-stable lipase producer. Annals of Microbiology, 59(3), 539–543.

    Article  CAS  Google Scholar 

  55. Iizumi, T., Nakamura, K., & Fukase, T. (1990). Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56. Agricultural Biological Chemistry, 54(5), 1253–1258.

    Article  CAS  Google Scholar 

  56. Royter, M., Schmidt, M., Elend, C., Hobenreich, H., Schafer, T., Bornscheuer, U. T., et al. (2009). Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles, 13(5), 769–783.

    Article  CAS  Google Scholar 

  57. Shu, Z. Y., Yang, J. K., & Yan, Y. J. (2007). Purification and characterization of a lipase from Aspergillus niger F044. Chinese Journal of Biotechnology, 23, 96–101.

    Article  CAS  Google Scholar 

  58. Han, S. J., Back, J. H., Yoon, M. Y., Shin, P. K., Cheong, C. S., Sung, M. H., et al. (2003). Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie, 85, 501–510.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjukta Patra.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material Table 1

Details of result as mentioned in text are provided in supplementary Table 1 highlights the ten annotated subfamilies of the twenty nine organic solvent stable lipases laying especial emphasis on the surface amino acid residue composition. (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravorty, D., Parameswaran, S., Dubey, V.K. et al. Unraveling the Rationale Behind Organic Solvent Stability of Lipases. Appl Biochem Biotechnol 167, 439–461 (2012). https://doi.org/10.1007/s12010-012-9669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9669-9

Keywords

Navigation