Skip to main content
Log in

Cloning, Molecular Characterization, and mRNA Expression of the Thermostable Family 3 β-Glucosidase from the Rare Fungus Stachybotrys microspora

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Stachybotrys microspora possess a rich β-glucosidase system composed of five β-glucosidases. Three of them were already purified to homogeneity and characterized. In order to isolate the β-glucosidase genes from S. microspora and study their regulation, a PCR strategy using consensus primers was used as a first step. This approach enabled the isolation of three different fragments of family 3 β-glucosidase gene. A representative genomic library was constructed and probed with one amplified fragment gene belonging to family 3 of β-glucosidase. After two rounds of hybridization, seven clones were obtained and the analysis of DNA plasmids leads to the isolation of one clone (CF3) with the largest insert of 7 kb. The regulatory region shows multiple TC-rich elements characteristic of constitutive promoter, explaining the expression of this gene under glucose condition, as shown by zymogram and RT-PCR analysis. The tertiary structure of the deduced amino acid sequence of Smbgl3 was predicted and has shown three conserved domains: an (α/β)8 triose phosphate isomerase (TIM) barrel, (α/β)5 sandwich, and fibronectin type III domain involved in protein thermostability. Zymogram analysis highlighted such thermostable character of this novel β-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarity. Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  2. Opassiri, R., Pomthong, B., Akiyama, T., Nakphaichit, M., Onkoksoong, T., Ketudat-Cairns, M., et al. (2007). A stress-induced rice b-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochemical Journal, 408, 241–249.

    Article  CAS  Google Scholar 

  3. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  4. Rye, C. S., & Withers, S. G. (2000). Glycosidase mechanisms. Current Opinion in Chemical Biology, 4, 573–580.

    Article  CAS  Google Scholar 

  5. Varghese, J. N., Hrmova, M., & Fincher, G. B. (1999). Three-dimensional structure of a barley β-d-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure, 7, 179–190.

    Article  CAS  Google Scholar 

  6. Tomme, P., Warren, R. A., & Gilkes, N. R. (1995). Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology, 37, 1–81.

    Article  CAS  Google Scholar 

  7. Spezio, M., Wilson, D. D., & Karplus, P. A. (1993). Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry, 32, 9906–9916.

    Article  CAS  Google Scholar 

  8. Kleywegt, G., Zou, J. Y., Divine, C., Davies, G. J., Sinning, L., Stohlberg, J., et al. (1997). The crystal structures of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. Journal of Molecular Biology, 272, 383–397.

    Article  CAS  Google Scholar 

  9. Saloheimo, A., Aro, N., Ilmén, M., & Pentilla, M. (2000). Isolation of the ace1 gene encoding a cys2-His2 transcription factor involved in regulation of activity of the cellulase promotor cbh1 of Trichoderma reesei. Journal of Biological Chemistry, 275, 5817–5825.

    Article  CAS  Google Scholar 

  10. Zeilinger, S., Ebner, A., Marosits, T., Mach, R., & Kubicek, C. P. (2001). The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Molecular Genetics and Genomics, 266(1), 56–63.

    Article  CAS  Google Scholar 

  11. IImem, M., Klemsdal, S., & Pentilla, M. (1996). Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Molecular Genetics and Genomics, 253, 303–314.

    Google Scholar 

  12. Esen, A. (1993). β-Glucosidase overview. In A. Esen (Ed.), β-Glucosidases: biochemistry and molecular biology (pp. 1–14). ACS Symposium Series 533. Washington, DC: American Chemical Society.

  13. Gargouri, M., Smaali, I., Maugard, T., Legoy, M. D., & Marzouki, N. (2004). Fungus β-glycosidases. Immobilization and use in alkyl-β-glycoside synthesis. Journal of Molecular Catalysis B: Enzymatic, 29, 89–94.

    Article  CAS  Google Scholar 

  14. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  15. Amouri, B., & Gargouri, A. (2006). Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal, 32, 191–197.

    Article  CAS  Google Scholar 

  16. Saibi, W., Amouri, B., & Gargouri, A. (2007). Purification and biochemical characterization of a transglucosilating β-glucosidase of Stachybotrys strain. Applied Microbiology and Biotechnology, 77, 293–300.

    Article  CAS  Google Scholar 

  17. Saibi, W., Abdeljalil, S., & Gargouri, A. (2011). Carbon source directs the differential expression of β-glucosidases in Stachybotrys microspora. World Journal of Microbiology & Biotechnology, 27, 1765–1774.

    Article  CAS  Google Scholar 

  18. Mandels, M., & Weber, J. (1969). The production of cellulases. In G. D. Hajny & E. T. Reese (Eds.), Cellulases and their applications (pp. 391–414). Washington, DC: ACS.

    Chapter  Google Scholar 

  19. Trigui-Lahiani, H., & Gargouri, A. (2007). Cloning, genomic organization and mRNA expression of a pectin lyase gene from a mutant strain of Penicillium occitanis. Gene, 388, 54–60.

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  21. Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Research, 34, D108–D110.

    Article  CAS  Google Scholar 

  22. Nielsen, H., Engelbrecht, J., Brunak, S., & von Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10, 1–6.

    Article  CAS  Google Scholar 

  23. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  24. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R., et al. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomic protocols handbook (pp. 571–607). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  25. Hopwood, D. A., Bibb, M. J., Chater, K. F., et al. (1985). Genetic manipulation of streptomyces: a laboratory manual (pp. 152–153). Norwich: John Innes Foundation.

    Google Scholar 

  26. Laemmli, U. K., & Favre, M. (1973). Maturation of the head of bacteriophage T4. I. DNA packaging events. Journal of Molecular Biology, 80, 575–599.

    Article  CAS  Google Scholar 

  27. Arnold, K., Bordoil, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201.

    Article  Google Scholar 

  28. Pozzo, T., Linares-Pasten, J., Nordberg Karlsson, E., & Logan, D. T. (2010). Structural and functional analyses of β-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. Journal of Molecular Biology, 397, 724–739.

    Article  CAS  Google Scholar 

  29. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.

    Article  CAS  Google Scholar 

  30. Yuen, K. Y., Pascal, G., Wong, S. S. Y., Glaser, P., Woo, P. C. Y., Kunst, F., et al. (2003). Exploring the Penicillium marneffei genome. Archives of Microbiology, 179(5), 339–353.

    CAS  Google Scholar 

  31. Kupfer, D. M., Drabenstot, S. D., Buchanan, K. L., Lai, H., Zhu, H., Dyer, D. W., et al. (2004). Introns and splicing elements of five diverse fungi. Eukaryotic Cell, 3, 1088–1100.

    Article  Google Scholar 

  32. Kubicek, C. P., & Penttilä, M. E. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma and Gliocladium. In G. E. Harman & C. P. Kubicek (Eds.), Enzymes, biological control and commercial applications (Vol. 2, pp. 49–72). London: Taylor and Francis Ltd.

    Google Scholar 

  33. Iyer, V., & Struhl, K. (1995). Mechanism of differential utilization of the his3 TR and TC TATA elements. Molecular and Cellular Biology, 15, 7059–7066.

    CAS  Google Scholar 

  34. Huisinga, K. L., & Pugh, B. F. (2004). A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Molecular Cell, 13, 573–585.

    Article  CAS  Google Scholar 

  35. Martinez, E., Zhou, Q., L’Etoile, N. D., Oelgeschläger, T., Berk, A. J., & Roeder, R. G. (1995). Core promoter-specific function of a mutant transcription factor TFIID defective in TATA box binding. In Proceedings of the National Academy of Sciences, Washington, DC, vol. 92, pp. 11864–11868.

  36. Sandelin, A., Carninci, P., Lenhard, B., Ponjavic, J., Hayashizaki, Y., & Hume, D. A. (2007). Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nature Reviews Genetics, 8, 424–436.

    Article  CAS  Google Scholar 

  37. Bernard, V., Brunaud, V., & Lecharny, A. (2010). TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genomics, 11, 166.

    Article  Google Scholar 

  38. Broda, P., Birch, P. R. J., Brooks, P. R., & Sims, P. F. G. (1995). PCR mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium: substrate-dependent differential expression within gene families. Applied Environmental Microbiology, 61, 2358–2364.

    CAS  Google Scholar 

  39. Tempelaars, C. A., Birch, P. R., Sims, P. F., & Broda, P. (1994). Isolation, characterization, and analysis of the expression of the cbhII gene of Phanerochaete chrysosporium. Applied Environmental Microbiology, 60, 4387–4393.

    CAS  Google Scholar 

  40. Workman, W. E., & Day, D. (1982). Purification and properties of beta-glucosidase from Aspergillus terreus. Applied and Environmental Microbiology, 44, 1289–1295.

    CAS  Google Scholar 

  41. Watanabe, T., Sato, T., Yoshioka, S., Koshijima, T., & Kuwahara, M. (1992). Purification and properties of Aspergillus niger β-glucosidase. European Journal of Biochemistry, 209, 651–659.

    Article  CAS  Google Scholar 

  42. Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z., & Barre, P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology, 64, 3607–3614.

    CAS  Google Scholar 

  43. Yan, T. R., & Lin, C. L. (1997). Purification and characterization of a glucose tolerant β-glucosidase from Aspergillus niger CCRC 31494. Bioscience, Biotechnology, and Biochemistry, 61, 965–970.

    Article  CAS  Google Scholar 

  44. Saha, B. C., & Bothast, R. J. (1996). Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Applied and Environmental Microbioly, 62, 3165–3170.

    CAS  Google Scholar 

  45. Deshpande, V., Eriksson, K. E., & Pettersson, B. (1978). Production, purification and partial characterization of 1,4-β-glucosidase enzymes from Sporotrichum pulverulentum. European Journal of Biochemistry, 90, 191–198.

    Article  CAS  Google Scholar 

  46. Smith, M. H., & Gold, M. H. (1979). Phanerochaete chrysosporium β-glucosidase: induction, cellular localization, and physical characterization. Applied and Environmental Microbiology, 37, 938–942.

    CAS  Google Scholar 

  47. Tsukada, T., Igarashi, K., Yoshida, M., & Samejima, M. (2006). Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 73, 807–814.

    Article  CAS  Google Scholar 

  48. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  49. Hrmova, M., De Gori, R., Smith, B. J., Fairweather, J. K., Driguez, H., Varghese, J. N., et al. (2002). Structural basis for broad substrate specificity in higher plant β-d-glucan glucohydrolases. Plant Cell, 14, 1033–1052.

    Article  CAS  Google Scholar 

  50. Hrmova, M., Streltsov, V. A., Smith, B. J., Vasella, A., Varghese, J. N., & Fincher, G. B. (2005). Structural rationale for low-nanomolar binding of transition state mimics to a family GH3 β-D-glucan glucohydrolase from barley. Biochemistry, 44, 16529–16539.

    Article  CAS  Google Scholar 

  51. Bamford, V. A., Kolade, O. O., Osbourn, A. E., & Hemmings, A. M. (2004). Purification, crystallization and preliminary X-ray diffraction analysis of a fungal saponin-detoxifying enzyme. Acta Crystallographica Section D, 60, 1331–1333.

    Google Scholar 

  52. Yoshida, E., Hidaka, M., Fushinobu, S., Koyanagi, T., Minami, H., Tamaki, H., et al. (2010). Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. Biochemical Journal, 431, 39–49.

    Article  CAS  Google Scholar 

  53. Ingham, K. C., Brew, S. A., Broekelmann, T. J., & McDonald, J. A. (1984). Thermal stability of human plasma fibronectin and its constituent domains. The Journal of Biological Chemistry, 259(19), 11901–11907.

    CAS  Google Scholar 

Download references

Acknowledgments

Fatma Abdeljalil is thanked for reviewing English language. Lamia Jmal-Hammami and Mosbeh Dardouri are thanked for their technical help. We thank Professors Raja Mokdad-Gargouri and Hafedh Belghith for fruitful discussion of scientific interpretations. This work was supported by Grants from the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gargouri.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 980 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdeljalil, S., Trigui-Lahiani, H., Lazzez, H. et al. Cloning, Molecular Characterization, and mRNA Expression of the Thermostable Family 3 β-Glucosidase from the Rare Fungus Stachybotrys microspora . Mol Biotechnol 54, 842–852 (2013). https://doi.org/10.1007/s12033-012-9633-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9633-5

Keywords

Navigation