Skip to main content
Log in

In Vitro Molecular Characterization of RNA–Proteins Interactions During Initiation of Translation of a Wild-Type and a Mutant Coxsackievirus B3 RNAs

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5′ untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jackson, R. J., Hellen, C. U. T., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11, 113–127.

    Article  CAS  Google Scholar 

  2. Yu, Y., Abaeva, I. S., Marintchev, A., Pestova, T. V., & Hellen, C. U. T. (2011). Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Research, 39, 4851–4865.

    Article  CAS  Google Scholar 

  3. Hellen, C. U., & Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15, 1593–1612.

    Article  CAS  Google Scholar 

  4. Martίnez-Salas, E., Ramos, R., Lafuente, E., & López de Quinto, S. (2001). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. Journal of General Virology, 82, 973–984.

    Google Scholar 

  5. Yang, D., Cheung, P., Sun, Y., Yuan, J., Zhang, H., Carthy, C. M., et al. (2003). A shine-dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of Coxsackievirus B3 RNA. Virology, 305, 31–43.

    Article  CAS  Google Scholar 

  6. Hernández, G. (2008). Was the initiation of translation in early eukaryotes IRES driven? Trends in Biochemical Sciences, 33, 6–58.

    Article  Google Scholar 

  7. Kieft, J. S. (2008). Viral IRES RNA structures and ribosome interactions. Trends in Biochemical Sciences, 33, 274–283.

    Article  CAS  Google Scholar 

  8. Fernández-Miragall, O., López de Quinto, S., & Martínez-Salas, E. (2009). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 139, 172–182.

    Article  Google Scholar 

  9. Belsham, G. J., & Sonenberg, N. (2000). Picornavirus RNA translation: Roles for cellular proteins. Trends in Microbiology, 8, 330–335.

    Article  CAS  Google Scholar 

  10. Martίnez-Salas, E. (2008). The impact of RNA structure on picornavirus IRES activity. Trends in Microbiology, 16, 230–237.

    Article  Google Scholar 

  11. López de Quinto, S., & Martínez-Salas, E. (2000). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal initiation of translation in vivo. RNA, 6, 1380–1392.

    Article  Google Scholar 

  12. Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I., et al. (2000). A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes & Development, 14, 2028–2045.

    CAS  Google Scholar 

  13. De Breyne, S., Yu, Y., Pestova, T. V., & Hellen, C. U. T. (2008). Factor requirements for translation initiation on the Simian picornavirus internal ribosomal entry site. RNA, 14, 367–380.

    Article  Google Scholar 

  14. Browning, K. S., Gallie, D. R., Hershey, J. W., Hinnebusch, A. G., Maitra, U., Merrick, W. C., et al. (2001). Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends in Biochemical Sciences, 26, 284.

    Article  CAS  Google Scholar 

  15. Martineau, Y., Derry, M. C., Wang, X., Yanagiya, A., Berlanga, J. J., Shyu, A. B., et al. (2008). Poly (A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Molecular and Cellular Biology, 28, 6658–6667.

    Article  CAS  Google Scholar 

  16. Hinnebusch, A. G. (2006). eIF3: A versatile scaffold for translation initiation complexes. Trends in Biochemical Sciences, 31, 553–562.

    Article  CAS  Google Scholar 

  17. Hershey, J. W. B., & Merrick, W. C. (2000). Pathway and mechanism of initiation of protein synthesis. In N. Sonenberg, J. W. B. Hershey, & M. B. Mathews (Eds.), Translational control of gene expression (pp. 33–88). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  18. López De Quinto, S., Lafuente, E., & Martίnez-Salas, E. (2001). IRES interaction with translation initiation factors: Functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA, 7, 1213–1226.

    Article  Google Scholar 

  19. Gingras, A. C., Raught, B., & Sonenberg, N. (1999). eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annual Review of Biochemistry, 68, 913–963.

    Article  CAS  Google Scholar 

  20. Nygard, O., & Westermann, P. (1982). Specific interaction of one subunit of eukaryotic initiation factor eIF-3 with 18S ribosomal RNA within the binary complex, eIF-3-small ribosomal subunit, as shown by cross-linking experiments. Nucleic Acids Research, 10, 1327–1334.

    Article  CAS  Google Scholar 

  21. Asano, K., Kinzy, T. G., Merrick, W. C., & Hershey, J. W. B. (1997). Conservation and diversity of eukaryotic translation initiation factor eIF3. The Journal of Biological Chemistry, 272, 1101–1109.

    Article  CAS  Google Scholar 

  22. Block, K. L., Vornlocher, H. P., & Hershey, J. W. B. (1998). Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3. The Journal Biological Chemistry, 273, 31901–31908.

    Article  CAS  Google Scholar 

  23. Buratti, E., Tisminetzky, S., Zotti, M., & Baralle, F. E. (1998). Functional analysis of the interaction between HCV 5′ UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Research, 26, 3179–3187.

    Article  CAS  Google Scholar 

  24. Sizova, D. V., Kolupaeva, V. G., Pestova, T. V., Shatsky, I. N., & Hellen, C. U. T. (1998). Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. Journal of Virology, 72, 4775–4782.

    CAS  Google Scholar 

  25. Pestova, T. V., Shatsky, I. N., & Hellen, C. U. T. (1996). Functional dissection of eukaryotic initiation factor eIF4F: The 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Molecular and Cellular Biology, 16, 6870–6878.

    CAS  Google Scholar 

  26. Tarun, S. Z., Jr., & Sachs, A. B. (1996). Association of the yeast poly (A) tail binding protein with translation initiation factor eIF-4G. The EMBO Journal, 15, 7168–7177.

    CAS  Google Scholar 

  27. Preiss, T., & Hentze, W. M. (1999). From factors to mechanism: Translation and translational control in eukaryotes. Current Opinion in Genetics & Development, 9, 515–521.

    Article  CAS  Google Scholar 

  28. Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S., et al. (1998). A novel functional human eukaryotic translation initiation factor 4G. Molecular and Cellular Biology, 18, 334–342.

    CAS  Google Scholar 

  29. Lamphear, B. J., Kirchweger, R., Skern, T., & Rhoads, R. E. (1995). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. The Journal of Biological Chemistry, 270, 21975–21983.

    Article  CAS  Google Scholar 

  30. Pulido, M. R., Serrano, P., Sáiz, M., & Martínez-Salas, E. (2007). Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a, b, and PABP RNA-binding proteins. Virology, 364, 466–474.

    Article  Google Scholar 

  31. Imataka, H., Gradi, A., & Sonenberg, N. (1998). A newly identified N-terminal amino acid sequence of human eIF4G binds poly (A)-binding protein and functions in poly (A)-dependent translation. The EMBO Journal, 17, 7480–7489.

    Article  CAS  Google Scholar 

  32. Morino, S., Imataka, H., Svitkin, Y. V., Pestova, T. V., & Sonenberg, N. (2000). Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap dependent translation, and the C-terminal one-third functions as a modulatory region. Molecular and Cellular Biology, 20, 468–477.

    Article  CAS  Google Scholar 

  33. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L. C., Merrick, W. C., & Rhoads, R. E. (2001). Characterization of the two eIF4A-binding sites on human eIF4G-1. The Journal of Biological Chemistry, 276, 2872–2879.

    Article  CAS  Google Scholar 

  34. Imataka, H., & Sonenberg, N. (1997). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Molecular and Cellular Biology, 17, 6940–6947.

    CAS  Google Scholar 

  35. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L. C., & Rhoads, R. E. (2000). Mutually cooperative binding of eukaryotic translation initiation factor eIF3 and eIF4A to human eIF4G-1. The Journal of Biological Chemistry, 275, 41369–41376.

    Article  CAS  Google Scholar 

  36. Ali, I. K., McKendrick, L., Morley, S. J., & Jackson, R. J. (2001). Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. The EMBO Journal, 20, 4233–4242.

    Article  CAS  Google Scholar 

  37. Chau, D. H. W., Yuan, J., Zhang, H., Cheung, P., Lim, T., Liu, Z., et al. (2007). Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis, 12, 513–524.

    Article  CAS  Google Scholar 

  38. Belsham, G. J., & Jackson, R. J. (2000). Translation initiation on picornavirus RNA. In N. Sonenberg, et al. (Eds.), Translational control of gene expression (pp. 869–900). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  39. Stoneley, M., & Willis, A. E. (2004). Cellular internal ribosome entry segments: Structures, trans-acting factors and regulation of gene expression. Oncogene, 23, 3200–3207.

    Article  CAS  Google Scholar 

  40. Fernández-Miragall, O., Ramos, R., Ramajo, J., & Martίnez-Salas, E. (2006). Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA, 12, 223–234.

    Article  Google Scholar 

  41. Yu, Y., Marintchev, A., Kolupaeva, V. G., Unbehaun, A., Veryasova, T., Lai, S. C., et al. (2009). Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acid Research, 37, 5167–5182.

    Article  CAS  Google Scholar 

  42. Fernández-Miragall, O., & Martίnez-Salas, E. (2003). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA, 9, 1333–1344.

    Article  Google Scholar 

  43. Ben M’hadheb-Gharbi, M., Gharbi, J., Paulous, S., Brocard, M., Komaromva, A., Aouni, M., et al. (2006). Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of the Coxsackievirus B3. Molecular Genetics and Genomics, 276, 402–412.

    Article  Google Scholar 

  44. Ben M’hadheb-Gharbi, M., Paulous, S., Aouni, M., Kean, K. M., & Gharbi, J. (2007). The substitution U475 C with Sabin3-like mutation within the IRES attenuate coxsackievirus B3 cardiovirulence. Molecular Biotechnology, 36, 52–60.

    Article  Google Scholar 

  45. Ben M’Hadheb-Gharbi, M., El Hiar, R., Paulous, S., Jaidane, H., Aouni, M., Kean, K. M., et al. (2008). Role of GNRA motif mutations within stem–loop V of internal ribosome entry segment in coxsackievirus B3 molecular attenuation. Journal of Molecular Microbiology and Biotechnology, 14, 147–156.

    Article  Google Scholar 

  46. Ben M’hadheb-Gharbi, M., Kean, K. M., & Gharbi, J. (2009). Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of Coxsackievirus B3 mutants. Molecular Biology Reports, 36, 255–262.

    Article  Google Scholar 

  47. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by Acid Guanidium thiocyanate-phenol-Chloroform extraction. Analytical Biochemistry, 162, 156–159.

    Article  CAS  Google Scholar 

  48. López de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F., & Martinez-Salas, E. (2002). IRES-driven translation is stimulated separately by the FMDV 30-NCR and poly (A) sequences. Nucleic Acid Research, 30, 4398–4405.

    Article  Google Scholar 

  49. Pisarev, A. V., Unbehaun, A., Hellen, C. U., & Pestova, T. V. (2007). Assembly and analysis of eukaryotic translation initiation complexes. Methods in Enzymology, 430, 147–177.

    Article  CAS  Google Scholar 

  50. Locker, N., Chamond, N., & Sargueil, B. (2011). A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acid Research, 39, 2367–2377.

    Article  CAS  Google Scholar 

  51. Baboonian, C., Davies, M. J., Booth, J. C., & McKenna, W. J. (1997). Coxsackie B viruses and human heart disease. Current Topics in Microbiology and Immunology, 223, 31–52.

    Article  CAS  Google Scholar 

  52. Pasch, A., & Frey, F. J. (2006). Coxsackie B viruses and the kidney: A neglected topic. Nephrology, Dialysis, Transplantation, 21, 1184–1187.

    Article  Google Scholar 

  53. Mena, I., Perry, C. M., Harkin, S., et al. (1999). The role of B lymphocytes in coxsackievirus B3 infection. The American Journal of Pathology, 155, 1205–1215.

    Article  CAS  Google Scholar 

  54. Kim, D. S., & Nam, J. H. (2010). Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert Opinion on Biological Therapy, 10, 179–190.

    Article  CAS  Google Scholar 

  55. Johnson, P. R., Feldman, S., Thompson, J. M., et al. (1986). Immunity to influenza A virus infection in young children: A comparison of natural infection, live cold-adapted vaccine, and inactivated vaccine. Journal of Infectious Diseases, 154, 121–127.

    Article  CAS  Google Scholar 

  56. Suguitan, A. L., Jr., McAuliffe, J., Mills, K. L., et al. (2006). Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Medicine, 3, 1541–1555.

    Article  CAS  Google Scholar 

  57. Bailey, J. M., & Tapprich, W. E. (2007). Structure of the 5′-nontranslated region of the coxsackievirus B3 genome: Chemical modification and comparative sequence analysis. Journal of Virology, 81, 650–668.

    Article  CAS  Google Scholar 

  58. Holcik, M., & Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology, 6, 318–327.

    Article  CAS  Google Scholar 

  59. Gingras, A. C., & Raught, B. (2007). Signaling to translation initiation. In M. Mathews, N. Sonenberg, & J. W. B. Hershey (Eds.), Translational control in biology and medicine (3rd ed., pp. 369–400). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  60. Brown, B. A., & Ehrenfeld, E. (1979). Translation of poliovirus RNA in vitro: Changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology, 97, 396–405.

    Article  CAS  Google Scholar 

  61. Glass, M. J., & Summers, D. F. (1993). Identification of a trans-acting activity from liver that stimulates hepatitis A virus translation in vitro. Virology, 193, 1047–1050.

    Article  CAS  Google Scholar 

  62. Stewart, S. R., & Semler, B. L. (1997). RNA determinants of picornavirus cap-independent translation initiation. Seminars in Virology, 8, 242–255.

    Article  CAS  Google Scholar 

  63. La Monica, N., & Racaniello, V. R. (1989). Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. Journal of Virology, 63, 2357–2360.

    Google Scholar 

  64. Rinehart, J., Gomez, R. M., & Roos, R. P. (1997). Molecular determinants for virulence in coxsackievirus B1 infection. Journal of Virology, 71, 3986–3991.

    CAS  Google Scholar 

  65. Tu, Z., Chapman, N., Hufnagel, G., Tracy, S., Romero, J. R., Barry, W. H., et al. (1995). The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′nontranslated region. Journal of Virology, 69, 4607–4618.

    CAS  Google Scholar 

  66. Yang, D., Wilson, J. E., Anderson, D. R., Bohunek, L., Cordeiro, C., Kandolf, R., et al. (1997). In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5′ untranslated region of coxsackievirus B3: Potential targets for antiviral action of antisense oligomers. Virology, 228, 63–73.

    Article  CAS  Google Scholar 

  67. Dorner, A. J., Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E., & Wimmer, E. (1984). In vitro translation of poliovirus RNA: Utilization of internal initiation sites in reticulocyte lysate. Journal of Virology, 50, 507–514.

    CAS  Google Scholar 

  68. Meerovitch, K., Pelletier, J., & Sonenberg, N. (1989). A cellular protein that binds to the 5′ noncoding region of poliovirus RNA: Implications for internal translation initiation. Genes & Development, 3, 1026–1034.

    Article  CAS  Google Scholar 

  69. Ochs, K., Saleh, L., Bassili, G., Sonntag, V. H., Zeller, A., & Niepmann, M. (2002). Interaction of translation initiation factor eIF4B with the poliovirus internal ribosome entry site. Journal of Virology, 76, 2113–2122.

    Article  CAS  Google Scholar 

  70. Ochs, K., Zeller, A., Saleh, L., Bassili, G., Song, Y., Sonntag, A., et al. (2003). Impaired binding of standard initiation factors mediates poliovirus translation attenuation. Journal of Virology, 77, 115–122.

    Article  CAS  Google Scholar 

  71. Kuge, S., & Nomoto, A. (1987). Construction of viable deletion and insertion mutants of the Sabin strain type 1 poliovirus: Function of the 5′ non coding sequence in viral replication. Journal of Virology, 61, 1478–1487.

    CAS  Google Scholar 

  72. Meerovitch, K., Nicholson, R., & Sonenberg, N. (1991). In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5′ untranslated region. Journal of Virology, 65, 5895–5901.

    CAS  Google Scholar 

  73. Haller, A. A., & Semler, B. L. (1992). Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. Journal of Virology, 66, 5075–5086.

    CAS  Google Scholar 

  74. Ehrenfeld, E., & Semler, B. L. (1995). Anatomy of the poliovirus internal ribosome entry site. Current Topics in Microbiology and Immunology, 203, 65–83.

    Article  CAS  Google Scholar 

  75. Niepmann, M. (2009). Internal translation initiation of picornaviruses and hepatitis C virus. Biochimica et Biophysica Acta, 1789, 529–541.

    Article  CAS  Google Scholar 

  76. Meyer, K., Petersen, A., Niepmann, M., & Beck, E. (1995). Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. Journal of Virology, 69, 2819–2824.

    CAS  Google Scholar 

  77. Rust, R. C., Ochs, K., Meyer, K., Beck, E., & Niepmann, M. (1999). Interaction of eukaryotic initiation factor eIF4B with the internal ribosome entry site of foot-and-mouth disease virus is independent of the polypyrimidine tract-binding protein. Journal of Virology, 73, 6111–6113.

    CAS  Google Scholar 

  78. Méthot, N., Song, M. S., & Sonenberg, N. (1996). A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Molecular and Cellular Biology, 16, 5328–5334.

    Google Scholar 

  79. Hellen, C. U., Pestova, T. V., Litterst, M., & Wimmer, E. (1994). The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. Journal of Virology, 68, 941–950.

    CAS  Google Scholar 

  80. Pestova, T. V., Hellen, C. U., & Shatsky, I. N. (1996). Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Molecular and Cellular Biology, 16, 6859–6869.

    CAS  Google Scholar 

  81. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U., & Shatsky, I. N. (1998). Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. The Journal of Biological Chemistry, 273, 18599–18604.

    Article  CAS  Google Scholar 

  82. Kolupaeva, V. G., Lomakin, I. B., Pestova, T. V., & Hellen, C. U. (2003). Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Molecular and Cellular Biology, 23, 687–698.

    Article  CAS  Google Scholar 

  83. Dildine, S. L., & Semler, B. L. (1992). Conservation of RNA protein interactions among picornaviruses. Journal of Virology, 66, 4364–4376.

    CAS  Google Scholar 

  84. Haller, A. A., & Semler, B. L. (1995). Stem-loop structure synergy in binding cellular proteins to the 5′ non-coding region of poliovirus RNA. Virology, 206, 923–934.

    Article  CAS  Google Scholar 

  85. Andino, R., Rieckhof, G. E., Achacoso, P. L., & Baltimore, D. (1993). Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. The EMBO Journal, 12, 3587–3598.

    CAS  Google Scholar 

  86. Blyn, L. B., Towner, J. S., Semler, B. L., & Ehrenfeld, E. (1997). Requirement of poly (rC) binding protein 2 for translation of poliovirus RNA. Journal of Virology, 71, 6243–6246.

    CAS  Google Scholar 

  87. Hellen, C. U., Witherell, G. W., Schmid, M., Shin, S. H., Pestova, T. V., Gil, A., et al. (1993). A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proceedings of the National Academy of Sciences of the United Sciences of America, 90, 7642–7646.

    Article  CAS  Google Scholar 

  88. Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., Chan, E. K., et al. (1993). La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. Journal of Virology, 67, 3798–3807.

    CAS  Google Scholar 

  89. Ray, P. S., & Das, S. (2002). La autoantigen is required for the internal ribosome entry site-mediated translation of Coxsackievirus B3 RNA. Nucleic Acid Research, 30, 4500–4508.

    Article  CAS  Google Scholar 

  90. Bedard, K. M., Walter, B. L., & Semler, B. L. (2004). Multimerization of poly (rC) binding protein 2 is required for translation initiation mediated by a viral IRES. RNA, 10, 1266–1276.

    Article  CAS  Google Scholar 

  91. Costa-Mattioli, M., Svitkin, Y., & Sonenberg, N. (2004). La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Molecular and Cellular Biology, 24, 6861–6870.

    Article  CAS  Google Scholar 

  92. Yi, M. K., Shultz, D. E., & Lemon, S. M. (2000). Functional significance of the interaction of hepatitis A virus RNA with glyercaldehyde 3-phosphate dehydrogenase (GAPDH): Opposing effects of GAPDH and polypyrimidine tract binding protein on internal ribosomal entry site function. Journal of Virology, 74, 6459–6468.

    Article  CAS  Google Scholar 

  93. Schultz, D. E., Hardin, C. C., & Lemon, S. M. (1996). Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 5′-nontranslated RNA of hepatitis A virus. The Journal of Biological Chemistry, 271, 14134–14142.

    Article  CAS  Google Scholar 

  94. Thomas, A. A., Scheper, G. C., Kleijn, M., De Boer, M., & Voorma, H. O. (1992). Dependence of the adenovirus tripartite leader on the p220 subunit of eukaryotic initiation factor 4F during in vitro translation. Effect of p220 cleavage by foot-and-mouth-disease-virus L-protease on in vitro translation. European Journal of Biochemistry, 207, 471–477.

    Article  CAS  Google Scholar 

  95. Merrick, W. C. (1992). Mechanism and regulation of eukaryotic protein synthesis. Microbiological Reviews, 56, 291–315.

    CAS  Google Scholar 

  96. Cheung, P., Zhang, M., Yuan, J., Chau, D., Yanagawa, B., McManus, B., et al. (2002). Specific interactions of HeLa cell proteins with coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5′untranslated region. Virus Research, 90, 23–36.

    Article  CAS  Google Scholar 

  97. Lomakin, I. B., Hellen, C. U. T., & Pestova, T. V. (2000). Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosome entry site of encephalomyocarditis virus and is required for internal initiation of translation. Molecular and Cellular Biology, 20, 6019–6029.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all members of the laboratory UMR 8015: “Biological Crystallography and RMN”; Faculty of Pharmacy; University Paris-Descartes (France) and the laboratory of “Molecular Biology”; Research Center “Severo Ochoa”, CSIC; Autonomous University of Madrid (Spain) for providing reagents and scientific technical assistance. The study was supported by research grants from the DGRS/CNRS: “Direction Générale de la Recherche Scientifique, Tunisie” et “le Centre National de la Recherche Scientifique, France” and from a Spanish research project AECI A/018085/08 (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawhar Gharbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souii, A., M’hadheb-Gharbi, M.B., Aouni, M. et al. In Vitro Molecular Characterization of RNA–Proteins Interactions During Initiation of Translation of a Wild-Type and a Mutant Coxsackievirus B3 RNAs. Mol Biotechnol 54, 515–527 (2013). https://doi.org/10.1007/s12033-012-9592-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9592-x

Keywords

Navigation