Skip to main content
Log in

Genomic Subtraction Recovers Rye-Specific DNA Elements Enriched in the Rye Genome

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Repetitive DNA sequence families have been identified in methylated relic DNAs of rye. This study sought to isolate rye genome-specific repetitive elements regardless of the level of methylation, using a genomic subtraction method. The total genomic DNAs of rye-chromosome-addition-wheat lines were cleaved to short fragments with a methylation-insensitive 4-bp cutter, MboI, and then common DNA sequences between rye and wheat were subtracted by annealing with excess wheat genomic DNA. Four classes of rye-specific repetitive elements were successfully isolated from both the methylated and non-methylated regions of the genome. Annealing of the DNA mixture at a ratio of the enzyme-restricted fragments:the sonicated fragments (1:3–1:5) was key to this success. Two classes of repetitive elements identified here belong to representative repetitive families: the tandem 350-family and the dispersed R173 family. Southern blot hybridization patterns of the two repetitive elements showed distinct fragments in methylation-insensitive EcoO109I digests, but continuous smear signals in the methylation-sensitive PstI and SalI digests, indicating that both of the known families are contained in the methylated regions. The subtelomeric tandem 350-family is organized by multimers of a 380-bp-core unit defined by the restriction enzyme EcoO109I. The other two repetitive element classes had new DNA sequences (444, 89 bp) and different core-unit sizes, as defined by methylation-sensitive enzymes. The EcoO109I recognition sites consisting of PyCCNGGPu-multi sequences existed with high frequency in the four types of rye repetitive families and might be a useful tool for studying the genomic organization and differentiation of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkhimova, O. G., Mazurok, N. A., Potapova, T. A., Zakian, S. M., Heslop-Harrison, J. S., & Vershinin, A. V. (2004). Diverse patterns of the tandem repeats organization in rye. Chromosoma, 113, 42–52. doi:10.1007/s00412-004-0294-4.

    Article  CAS  Google Scholar 

  2. Alves, E., Ballesteros, I., Linacero, R., & Vazquez, A. M. (2005). RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theoretical and Applied Genetics, 111, 431–436. doi:10.1007/s00122-005-2013-9.

    Article  CAS  Google Scholar 

  3. Appels, R., Dennis, E. S., Smyth, D. R., & Peacock, W. J. (1981). Two repeated DNA sequences from the heterochromatic regions of rye (Secale careale) chromosomes. Chromosoma, 84, 265–277. doi:10.1007/BF00399137.

    Article  CAS  Google Scholar 

  4. Appels, R., Gustafson, J. P., & May, C. E. (1982). Structural variation in the heterochromatin of rye chromosomes in Triticales. Theoretical and Applied Genetics, 63, 235–244. doi:10.1007/BF00304002.

    Article  Google Scholar 

  5. Appels, R., Moran, L. B., & Gustafson, J. P. (1986). Rye heterochromatin. I. Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Canadian Journal of Genetics and Cytology, 28, 645–657.

    CAS  Google Scholar 

  6. Bedbrook, J. R., Jones, J., O’Dell, M., Thompson, R. D., & Flavell, R. B. (1980). A molecular description of telomeric heterochromatin in Secale species. Cell, 19, 545–560. doi:10.1016/0092-8674(80)90529-2.

    Article  CAS  Google Scholar 

  7. Bennetzen, J. L., Ma, J., & Devos, K. M. (2005). Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95, 127–132. doi:10.1093/aob/mci008.

    Article  CAS  Google Scholar 

  8. Brown, J. W. S., Marshall, D. F., & Echeverria, M. (2008). Intronic noncoding RNAs and splicing. Trends in Plant Science, 13, 335–342. doi:10.1016/j.tplants.2008.04.010.

    Article  CAS  Google Scholar 

  9. Cuadrado, A., Ceoloni, C., & Jouve, M. (1995). Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome, 38, 1061–1069. doi:10.1139/g95-101.

    Article  CAS  Google Scholar 

  10. Cuadrado, A., & Jouve, M. (1997). Distribution of highly repeated DNA sequences in species of the genus Secale. Genome, 40, 309–317. doi:10.1139/g97-043.

    Article  CAS  Google Scholar 

  11. Cuadrado, A., & Jouve, M. (2002). Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. The Journal of Heredity, 93, 339–345. doi:10.1093/jhered/93.5.339.

    Article  CAS  Google Scholar 

  12. Cuadrado, A., Vitellozzi, F., Jouve, M., & Ceoloni, C. (1997). Fluorescence in situ hybridization with multiple repeated DNA probes applied to the analysis of wheat-rye chromosome pairing. Theoretical and Applied Genetics, 94, 347–355. doi:10.1007/s001220050422.

    Article  CAS  Google Scholar 

  13. Flavell, R. B., Bennett, M. D., Smith, J. B., & Smith, D. B. (1974). Genome size and the proportion of repeated sequence DNA in plants. Biochemical Genetics, 12, 257–269. doi:10.1007/BF00485947.

    Article  CAS  Google Scholar 

  14. Flavell, A. J., Dumbar, E., Anderson, R., Pearce, S. R., Hartley, R., & Kumar, A. (1992). Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Research, 20, 3639–3644. doi:10.1093/nar/20.14.3639.

    Article  CAS  Google Scholar 

  15. Flavell, R. B., O’Dell, M., & Hutchinson, J. (1981). Nucleotide sequence organization in plant chromosomes and evidence for sequence translocation during evolution. Cold Spring Harbor Symposia on Quantitative Biology, 45, 501–506.

    CAS  Google Scholar 

  16. Flavell, A. J., Pearce, S. R., & Kumar, A. (1994). Plant transposable elements and the genome. Current Opinion in Genetics and Development, 4, 838–844. doi:10.1016/0959-437X(94)90068-X.

    Article  CAS  Google Scholar 

  17. Flavell, R. B., Rimpau, J. R., & Smith, D. B. (1977). Repeated sequence DNA relationships in four cereal genomes. Chromosoma, 63, 205–222. doi:10.1007/BF00327450.

    Article  CAS  Google Scholar 

  18. Flavell, R. B., & Smith, D. B. (1976). Nucleotide organization in the wheat genome. Heredity, 37, 231–252. doi:10.1038/hdy.1976.85.

    Article  Google Scholar 

  19. Francki, M. G. (2001). Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L). Genome, 44, 266–274. doi:10.1139/gen-44-2-266.

    Article  CAS  Google Scholar 

  20. Francki, M. G., Crasta, O. R., Sharma, H. C., Ohm, H. W., & Anderson, J. M. (1997). Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U. S. soft red winter wheat (Triticum aestivum L.). Genome, 40, 716–722. doi:10.1139/g97-794.

    Article  CAS  Google Scholar 

  21. Graybosch, R. A. (2001). Uneasy unions: Quality effects of rye chromatin transfers to wheat. Journal of Cereal Science, 33, 3–16. doi:10.1006/jcrs.2000.0336.

    Article  CAS  Google Scholar 

  22. Guidet, F., Rogowsky, P. M., Taylor, C., Song, W., & Langridge, P. (1991). Cloning and characterization of a new rye-specific repeated sequence. Genome, 34, 81–87.

    Google Scholar 

  23. He, M., Wild, A., & Kaderbhai, M. A. (1989). A simple single-step procedure for small-scale preparation of Escherichia coli plasmids. Nucleic Acids Research, 18, 1660. doi:10.1093/nar/18.6.1660.

    Article  Google Scholar 

  24. Heslop-Harrison, J. S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A. V., Alkhimova, E. G., et al. (1997). The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implication for genome evolution. Genetica, 100, 197–204. doi:10.1023/A:1018337831039.

    Article  CAS  Google Scholar 

  25. Koenen, M. (1989). Recovery of DNA from agarose gels using liquid nitrogen. Trends in Genetics, 5, 137.

    CAS  Google Scholar 

  26. Kumar, A. (1996). The adventures of the Ty1-copia group of retrotransposons in plants. Trends in Genetics, 12, 41–43. doi:10.1016/0168-9525(96)81393-X.

    Article  CAS  Google Scholar 

  27. Kumar, A., Pearce, S. R., McLean, K., Harrison, G., Heslop-Harrison, J. S., Waugh, R., et al. (1997). The Ty1-copia group of retrotransposons in plants: Genomic organisation, evolution, and use as molecular markers. Genetica, 100, 205–217. doi:10.1023/A:1018393931948.

    Article  CAS  Google Scholar 

  28. Lamar, E. E., & Palmer, E. (1984). Y-encoded, species-specific DNA in mice: Evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell, 37, 171–177. doi:10.1016/0092-8674(84)90312-X.

    Article  CAS  Google Scholar 

  29. Lapitan, N. L. V., Sear, R. G., Rayburn, A. L., & Gill, B. S. (1986). Detection of chromosome breakpoints by in situ hybridization with a biotin-labeled DNA probe. The Journal of Heredity, 77, 415–419.

    Google Scholar 

  30. Lima-Brito, L., Guedes-Pinto, H., Harrison, G. E., & Heslop-Harrison, J. S. (1997). Molecular cytogenetic analysis of durum wheat×triordeum hybrids. Genome, 40, 362–369. doi:10.1139/g97-049.

    Article  CAS  Google Scholar 

  31. Lisitsyn, N., Lisitsyn, N., & Wigler, M. (1993). Cloning the differences between two complex genomes. Science, 259, 946–951. doi:10.1126/science.8438152.

    Article  CAS  Google Scholar 

  32. Manninen, I., & Schulman, A. H. (1993). BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Molecular Biology, 22, 829–846. doi:10.1007/BF00027369.

    Article  CAS  Google Scholar 

  33. Marillonnet, S., & Wessler, S. R. (1998). Extreme structural heterogeneity among the members of a maize. Genetics, 150, 1245–1246.

    CAS  Google Scholar 

  34. McIntyre, C. L., Clarke, B. C., & Appels, R. (1988). Amplification and dispersion of repeated DNA sequences in the Triticeae. Plant Systematics and Evolution, 160, 39–59. doi:10.1007/BF00936708.

    Article  CAS  Google Scholar 

  35. McIntyre, C. L., Pereira, S., Moran, L. B., & Appels, R. (1990). New Secale careale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome, 33, 635–640.

    CAS  Google Scholar 

  36. Nagy, E. D., & Lelley, T. (2003). Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm or rye in a wheat background. Theoretical and Applied Genetics, 107, 1271–1277. doi:10.1007/s00122-003-1367-0.

    Article  CAS  Google Scholar 

  37. Pearce, S. R., Harrison, G., Heslop-Harrison, J. S., Flavell, A. J., & Kumar, A. (1997). Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale careale). Genome, 40, 617–625. doi:10.1139/g97-081.

    Article  CAS  Google Scholar 

  38. Rogowsky, P. M., Liu, J. Y., Manning, S., Taylor, C., & Langridge, P. (1992). Structural heterogeneity in the R173 family of rye-specific repetitive DNA sequences. Plant Molecular Biology, 20, 95–102. doi:10.1007/BF00029152.

    Article  CAS  Google Scholar 

  39. Rogowsky, P. M., Manning, S., Liu, J. Y., & Langridge, P. (1991). The R173 family of rye-specific repetitive DNA sequences: A structural analysis. Genome, 34, 88–95.

    Google Scholar 

  40. SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., & Bennetzen, J. L. (1998). The paleontology of intergene retrotransposons of maize. Nature Genetics, 20, 43–45. doi:10.1038/1695.

    Article  CAS  Google Scholar 

  41. Smith, D. B., & Flavell, R. B. (1977). Nucleotide sequence organization in the rye genome. Biochimica et Biophysica Acta, 474, 82–97.

    CAS  Google Scholar 

  42. Suoniemi, A., Anamthawat-Jonsson, K., Arna, T., & Schulman, A. H. (1996). Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L) genome. Plant Molecular Biology, 30, 1321–1329. doi:10.1007/BF00019563.

    Article  CAS  Google Scholar 

  43. Tomita, M., Shinohara, K., & Morimoto, M. (2008). Revolver is a new class of transposon-like gene composing the Triticeae genome. DNA Research, 15, 49–62. doi:10.1093/dnares/dsm029.

    Article  CAS  Google Scholar 

  44. Vershinin, A. V., Alkhimova, O. G., & Heslop-Harrison, J. S. (1996). Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Research, 4, 517–525. doi:10.1007/BF02261779.

    Article  CAS  Google Scholar 

  45. Vershinin, A. V., Schwarzacher, T., & Heslop-Harrison, J. S. (1995). The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell, 7, 1823–1833.

    Article  CAS  Google Scholar 

  46. Wendel, J. F. (2000). Genome evolution in ployploids. Plant Molecular Biology, 42, 225–249. doi:10.1023/A:1006392424384.

    Article  CAS  Google Scholar 

  47. Zeller, F. J., & Fischbec, G. (1971). Cytologische Untersuchungen zur Identifizierung des Fremdchromosoms in derWeizensorte Zorba (W565). Z Pflanzenzuchtg, 66, 260–265.

    Google Scholar 

Download references

Acknowledgment

This study was supported by Grants-in-Aid for Scientific Research (No. 01760004 and No. 04760006) from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonori Tomita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, M., Akai, K. & Morimoto, T. Genomic Subtraction Recovers Rye-Specific DNA Elements Enriched in the Rye Genome. Mol Biotechnol 42, 160–167 (2009). https://doi.org/10.1007/s12033-009-9151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9151-2

Keywords

Navigation