Skip to main content
Log in

cDNA-AFLP Analysis Reveals Differential Gene Expression in Response to Salt Stress in Foxtail Millet (Setaria italica L.)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siminovitch, D., & Cloutier, Y. (1982). Twenty-four-hour induction of freezing and drought tolerance in plumules of winter rye seedlings by desiccation stress at room temperature in the dark. Plant Physiology, 60, 250–255.

    Article  Google Scholar 

  2. Lang, V., Mantyla, E., Welin, B., Sundberg, B., & Tapio Palva, E. (1994). Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana abscisic acid. Plant Physiology, 104, 1341–1349.

    Google Scholar 

  3. Mantyla, E., Lang, V., & Tapio Palva, E. (1995). Role of abscisic acid in freezing tolerance, cold acclimation, and accumulation of LTI78 and RAB18 proteins in Arabidopsis thaliana. Plant Physiology, 107, 141–148.

    Google Scholar 

  4. Knight, H., Brandt, S., & Knight, M. R. (1998). A history of stress alters drought calcium signaling pathways in Arabidopsis. The Plant Journal, 16, 681–687. doi:10.1046/j.1365-313x.1998.00332.x.

    Article  CAS  Google Scholar 

  5. Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Science, 2, 48–54. doi:10.1016/S1360-1385(97)82562-9.

    Article  Google Scholar 

  6. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217–223.

    CAS  Google Scholar 

  7. Kramer, A. (1996). Structure and function of proteins involved in mammalian pre-mRNA splicing. Annual Review of Biochemistry, 65, 367–409. doi:10.1146/annurev.bi.65.070196.002055.

    Article  CAS  Google Scholar 

  8. Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14, 89–97. doi:10.1016/0167-7799(96)80929-2.

    Article  CAS  Google Scholar 

  9. Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499. doi:10.1146/annurev.arplant.51.1.463.

    Article  CAS  Google Scholar 

  10. Xiong, L., Shumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought and salt stresses. The Plant Cell, 14, S165–S183. doi:10.1105/tpc.010278.

    Article  CAS  Google Scholar 

  11. Breyne, P., & Zabeau, M. (2001). Genome-wide expression analysis of plant cell cycle modulated genes. Current Opinion in Plant Biology, 4, 136–142. doi:10.1016/S1369-5266(00)00149-7.

    Article  CAS  Google Scholar 

  12. Breyne, P., Dreesen, R., Cannoot, B., Rombaut, D., Vandepoele, K., Rombauts, S., et al. (2003). Quantitative cDNA-AFLP analysis for genome-wide expression studies. Molecular Genetics and Genomics, 269, 173–179.

    CAS  Google Scholar 

  13. Fukumura, R., Takahashi, H., Saito, T., Tsutsumi, T., Fujimori, A., Sato, S., et al. (2003). A sensitive transcriptome analysis method that can detect unknown transcripts. Nucleic Acids Research, 31, e94. doi:10.1093/nar/gng094.

    Article  CAS  Google Scholar 

  14. Marathee, J. P. (1993). Structure and characteristics of the world millet economy. In K. W. Riley, S. C. Gupta, A. Seetharam, & J. N. Mushonga (Eds.), Advances in small millets (pp. 159–178). New Delhi: Oxford & IBH.

    Google Scholar 

  15. Sivaraman, L., & Ranjekar, P. K. (1984). Novel molecular features of millet genomes. Indian Journal of Biochemistry & Biophysics, 21, 299–303.

    CAS  Google Scholar 

  16. Sivaraman, L., & Gupta, V. S. (1986). DNA sequence organization in the genomes of three related millet plant species. Plant Molecular Biology, 6, 375–388. doi:10.1007/BF00027131.

    Article  Google Scholar 

  17. Sanger, F., Nicklen, S., & Coulsen, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467. doi:10.1073/pnas.74.12.5463.

    Article  CAS  Google Scholar 

  18. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. doi:10.1093/nar/25.17.3389.

    Article  CAS  Google Scholar 

  19. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods (San Diego, Calif.), 25, 402–408. doi:10.1006/meth.2001.1262.

    CAS  Google Scholar 

  20. Vos, P., Hogers, R., Bleeker, M., Rijans, M., Van der Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414. doi:10.1093/nar/23.21.4407.

    Article  CAS  Google Scholar 

  21. Bachem, C. W. B., Van der Hoeven, R. S., de Bruijin, S. M., Vreugdenhil, D., Zabeau, M., & Visser, R. G. F. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during tuber development. The Plant Journal, 9, 745–753. doi:10.1046/j.1365-313X.1996.9050745.x.

    Article  CAS  Google Scholar 

  22. Baisakh, N., Subudhi, P. K., & Parami, N. P. (2006). cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Science, 170, 1141–1149. doi:10.1016/j.plantsci.2006.02.001.

    Article  CAS  Google Scholar 

  23. Tran, L. P., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., et al. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter. The Plant Cell, 16, 2481–2498. doi:10.1105/tpc.104.022699.

    Article  CAS  Google Scholar 

  24. He, X. J., Mu, R. L., Cao, W. H., Zhang, Z. G., Zhang, J. S., & Chen, S. Y. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 44, 903–916. doi:10.1111/j.1365-313X.2005.02575.x.

    Article  CAS  Google Scholar 

  25. Smith, C. W. J., Patton, J. G., & Nadal-Ginard, B. (1989). Alternative splicing in the control of gene expression. Annual Review of Genetics, 23, 527–577. doi:10.1146/annurev.ge.23.120189.002523.

    Article  CAS  Google Scholar 

  26. Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86, 407–421.

    CAS  Google Scholar 

  27. Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58. doi:10.1080/07352680590910410.

    Article  CAS  Google Scholar 

  28. Krude, T., & Keller, C. (2001). Chromatin assembly during S phase: Contributions from histone deposition, DNA replication and the cell division cycle. Cellular and Molecular Life Sciences, 58, 665–672. doi:10.1007/PL00000890.

    Article  CAS  Google Scholar 

  29. Ito, T., Ikehara, T., Nakagawa, T., Kraus, W. L., & Muramatsu, M. (2000). p300-Mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone. Genes & Development, 14, 1899–1907.

    CAS  Google Scholar 

  30. Krude, T. (1999). Chromatin assembly during DNA replication in somatic cells. European Journal of Biochemistry, 263, 1–5. doi:10.1046/j.1432-1327.1999.00508.x.

    Article  CAS  Google Scholar 

  31. Ridgway, P., & Almouzni, G. (2001). Chromatin assembly and organization. Journal of Cell Science, 114, 2711–2712.

    CAS  Google Scholar 

  32. Green, C. M., & Almouzni, G. (2002). When repair meets chromatin—First in series on chromatin dynamics. EMBO Reports, 3, 28–33. doi:10.1093/embo-reports/kvf005.

    Article  CAS  Google Scholar 

  33. Maser, R. S., & DePinho, R. A. (2002). Connecting chromosomes, crisis, and cancer. Science, 297, 565–569. doi:10.1126/science.297.5581.565.

    Article  CAS  Google Scholar 

  34. Haushalter, K. A., & Kadonaga, J. T. (2003). Chromatin assembly by DNA-translocating motors. Nature Reviews. Molecular Cell Biology, 4, 613–620. doi:10.1038/nrm1177.

    Article  CAS  Google Scholar 

  35. Abler, M. L., & Green, P. J. (1996). Control of mRNA stability in higher plants. Plant Molecular Biology, 32, 63–78. doi:10.1007/BF00039377.

    Article  CAS  Google Scholar 

  36. Carrington, J. C., & Ambros, V. (2003). Role of microRNAs in plant and animal development. Science, 301, 336–338. doi:10.1126/science.1085242.

    Article  CAS  Google Scholar 

  37. Kuhn, J. M., & Schroeder, J. I. (2003). Impacts of altered RNA metabolism on abscisic acid signaling. Current Opinion in Plant Biology, 6, 463–469. doi:10.1016/S1369-5266(03)00084-0.

    Article  CAS  Google Scholar 

  38. Shi, H. Z., Lee, B.-H., Wu, S. J., & Zhu, J.-K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21, 81–85. doi:10.1038/nbt766.

    Article  CAS  Google Scholar 

  39. Gong, Z. Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., & Zhu, J.-K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences of the United States of America, 99, 11507–11512. doi:10.1073/pnas.172399299.

    Article  CAS  Google Scholar 

  40. Goeres, D. C., Van Norman, J. M., Zhang, W., Fauver, N. A., Spencer, M. L., & Sieburth, L. E. (2007). Components of the Arabidopsis mRNA decapping complex are required for early seedling development. The Plant Cell, 19, 1549–1564. doi:10.1105/tpc.106.047621.

    Article  CAS  Google Scholar 

  41. Muhlrad, D., Decker, C. J., & Parker, R. (1994). Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 50>30 digestion of the transcript. Genes & Development, 8, 855–866. doi:10.1101/gad.8.7.855.

    Article  CAS  Google Scholar 

  42. van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E., & Seraphin, B. (2002). Human Dcp2: A catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. The EMBO Journal, 21, 6915–6924. doi:10.1093/emboj/cdf678.

    Article  Google Scholar 

  43. Xu, J., Yang, J. Y., Niu, Q. W., & Chua, N. H. (2006). Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. The Plant Cell, 18, 3386–3398. doi:10.1105/tpc.106.047605.

    Article  CAS  Google Scholar 

  44. McGarry, R. C., Barron, Y. D., Carvalho, M. F., Hill, J. E., Gold, D., Cheung, E., et al. (2003). A novel Arabidopsis acetyltransferase interacts with the Geminivirus movement protein NSP. The Plant Cell, 15, 1605–1618. doi:10.1105/tpc.012120.

    Article  CAS  Google Scholar 

  45. Chen, Y. W., Shao, G. H., & Chang, R. Z. (1997). The effect of salt stress on superoxide dismutase in various organelles of cotyledons of soybean seedlings. Acta Agronomica Sinica, 23, 214–219.

    Google Scholar 

  46. Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., & Ben-Hayyin, G. (1997). Salt and oxidative stress: Similar and specific response and their relation to salt tolerance in citrus. Planta, 203, 460–469. doi:10.1007/s004250050215.

    Article  CAS  Google Scholar 

  47. Gomez, J. M., Hernandez, J. A., Jimenez, A., del Rio, L. A., & Sevilla, F. (1999). Differential response of antioxidative systems of chloroplasts and mitochondria to long term NaCl stress of pea plant. Free Radical Research, 31(Suppl.), 11–18. doi:10.1080/10715769900301261.

    Article  Google Scholar 

  48. Sreenivasulu, N., Grimm, B., Wobus, U., & Weschke, W. (2000). Differential response of antioxidant components to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109, 435–442. doi:10.1034/j.1399-3054.2000.100410.x.

    Article  CAS  Google Scholar 

  49. Hernandez, J. A., Campillo, A., Jimenez, A., Alarcon, J. J., & Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. The New Phytologist, 141, 241–251. doi:10.1046/j.1469-8137.1999.00341.x.

    Article  CAS  Google Scholar 

  50. Hernandez, J. A., Jimerez, A., Mullineaux, P., & Sevilla, F. (2000). Tolerance of pea (Pisum sativum) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Biology, 23, 853–862.

    CAS  Google Scholar 

  51. Gomez, G. M., Jimenez, A., Olmos, E., & Sevilla, F. (2004). Location and effects of long term NaCl stress on Superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv Puget) chloroplasts. Journal of Experimental Botany, 55, 119–130. doi:10.1093/jxb/erh013.

    Article  CAS  Google Scholar 

  52. Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., & Mittler, R. (2007). Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology, 144, 1777–1785. doi:10.1104/pp.107.101436.

    Article  CAS  Google Scholar 

  53. Mathur, P. B., Vadez, V., & Sharma, K. K. (2008). Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Reports, 27, 411–424. doi:10.1007/s00299-007-0474-9.

    Article  CAS  Google Scholar 

  54. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., et al. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13, 889–905.

    Article  CAS  Google Scholar 

  55. Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., & Shinozaki, K. (1994). Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Molecular & General Genetics, 244, 331–340. doi:10.1007/BF00286684.

    Article  CAS  Google Scholar 

  56. Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G. J., et al. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406, 731–734. doi:10.1038/35021067.

    Article  CAS  Google Scholar 

  57. Tähtiharju, S., Sangwan, V., Monroy, A. F., Dhindsa, R. S., & Borg, M. (1997). The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 203, 442–447. doi:10.1007/s004250050212.

    Article  Google Scholar 

  58. Hwang, I., Sze, H., & Harper, J. F. (2000). A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 97, 6224–6229. doi:10.1073/pnas.97.11.6224.

    Article  CAS  Google Scholar 

  59. Cheng, H.-S., Wilmann, R. M., Chen, H.-C., & Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium dependant protein kinase gene family. Plant Physiology, 129, 469–485. doi:10.1104/pp.005645.

    Article  CAS  Google Scholar 

  60. Ludwig, A. A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., et al. (2005). Ethylene mediated cross talk between calcium dependant protein kinase and MAPK signaling controls stress response in plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 10736–10741. doi:10.1073/pnas.0502954102.

    Article  CAS  Google Scholar 

  61. Binyamin, L., Falah, M., Portnoy, V., Soudry, E., & Gepstein, S. (2001). The early light induced protein is also produced during leaf senescence of Nicotiana tabacum. Planta, 212, 591–597. doi:10.1007/s004250000423.

    Article  CAS  Google Scholar 

  62. Allakhverdiev, S. I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, M., Kanesaki, Y., et al. (2002). Salt stress inhibits the repair of photodamaged photosystem II by suppessing the transcription and translation of psbA genes in Synechocystis. Plant Physiology, 130, 1443–1453. doi:10.1104/pp.011114.

    Article  CAS  Google Scholar 

  63. Olsen, A. N., Ernst, H. A., Lo Leggio, L., & Skriver, K. (2005). NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 10, 79–87. doi:10.1016/j.tplants.2004.12.010.

    Article  CAS  Google Scholar 

  64. Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., et al. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology, 53, 383–397. doi:10.1023/B:PLAN.0000006944.61384.11.

    Article  CAS  Google Scholar 

  65. Guo, H. S., Xie, Q., Fie, J. F., & Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. The Plant Cell, 17, 1376–1386. doi:10.1105/tpc.105.030841.

    Article  CAS  Google Scholar 

  66. Ouyang, B., Yang, T., Li, H., Zhang, L., Zhang, Y., Zhang, J., et al. (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and Microarray analysis. Journal of Experimental Botany, 58, 507–520. doi:10.1093/jxb/erl258.

    Article  CAS  Google Scholar 

  67. Simpson, G. G., & Filipowicz, W. (1996). Splicing of precursors to mRNA in higher plants: Mechanism, regulation and sub-nuclear organization of the spliceosomal machinery. Plant Molecular Biology, 32, 1–41. doi:10.1007/BF00039375.

    Article  CAS  Google Scholar 

  68. Brown, J. W. S., & Simpson, C. G. (1998). Splice site selection in plant pre-mRNA splicing. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 77–95. doi:10.1146/annurev.arplant.49.1.77.

    Article  Google Scholar 

  69. Lorkovic, Z. J., Wieczorek Kirk, D. A., Lambermon, M. H., & Filipowicz, W. (2000). Pre-mRNA splicing in higher plants. Trends in Plant Science, 5, 160–167. doi:10.1016/S1360-1385(00)01595-8.

    Article  CAS  Google Scholar 

  70. Reddy, A. S. N. (2001). Nuclear pre mRNA splicing in plants. Critical Reviews in Plant Sciences, 20, 523–572. doi:10.1016/S0735-2689(01)80004-6.

    Article  CAS  Google Scholar 

  71. Manley, J. L., & Tacke, R. (1996). SR proteins and splicing control. Genes & Development, 10, 1569–1579. doi:10.1101/gad.10.13.1569.

    Article  CAS  Google Scholar 

  72. Sharp, P. A. (1994). Split genes and RNA splicing. Cell, 77, 805–815. doi:10.1016/0092-8674(94)90130-9.

    Article  CAS  Google Scholar 

  73. Rodriguez, M., Canales, E., & Borras-Hidalgo, O. (2005). Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada, 22, 1–10.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, National Institute of Plant Genome Research (NIPGR), for providing facilities and the Department of Biotechnology, Government of India, for providing financial support. Acknowledgement is also due toward Dr. Debasis Chattopadhyay (NIPGR, New Delhi) for his review and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Additional information

A. Jayaraman and S. Puranik contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, A., Puranik, S., Rai, N.K. et al. cDNA-AFLP Analysis Reveals Differential Gene Expression in Response to Salt Stress in Foxtail Millet (Setaria italica L.). Mol Biotechnol 40, 241–251 (2008). https://doi.org/10.1007/s12033-008-9081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9081-4

Keywords

Navigation