Skip to main content
Log in

Studies on mRNA Electroporation of Immature and Mature Dendritic Cells: Effects on their Immunogenic Potential

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-translated protein product and its immunogenic epitopes are significant parameters, which needs to be clarified in order to establish an effective electroporation protocol. In addition, despite extensive experimental investigations and their widespread application in research and clinical environments, little is known of the extent to which the immunological properties of DCs are influenced by electrical fields of critical strengths. We found that the mRNA transfection of DCs after maturation with short and low-voltage square-wave electrical pulses resulted in higher level of antigen expression and viability in addition to higher T-cell stimulatory ability compared to transfection of DCs prior to maturation. Mature mRNA-electroporated DCs showed long-lived expression of EGFP and were able to stimulate influenza matrix protein M1 (M1)-specific T cells up to 24 h after electroporation. However, when DCs were subjected to increasing electrical pulses the level of transgene expression was four-fold upregulated, equipping these DCs to be more potent in inducing M1-specific T cells. Also, the application of long electrical pulses induced further upregulation of HLA-DR, CD80, and CD86 expression in mature DCs, but did not promote phenotypic or functional maturation in immature DCs. These findings support the concept of mRNA transfection of DCs after maturation and also highlight the possibility to use long electrical pulses for further improvement of the immune responses by mRNA-transfected DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCs:

Dendritic cells

EGFP:

Enhanced green fluorescence protein

mAbs:

Monoclonal antibodies

M1:

Influenza matrix protein M1

PBMCs:

Peripheral blood mononuclear cells

References

  1. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252. doi:10.1038/32588.

    Article  CAS  Google Scholar 

  2. Lanzavecchia, A., & Sallusto, F. (2001). Regulation of T cell immunity by dendritic cells. Cell, 106, 263–266. doi:10.1016/S0092-8674(01)00455-X.

    Article  CAS  Google Scholar 

  3. Kyte, J. A., Mu, L., Aamdal, S., Kvalheim, G., Dueland, S., Hauser, M., et al. (2006). Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Therapy, 13, 905–918. doi:10.1038/sj.cgt.7700961.

    Article  CAS  Google Scholar 

  4. Mu, L. J., Kyte, J. A., Kvalheim, G., Aamdal, S., Dueland, S., Hauser, M., et al. (2005). Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. British Journal of Cancer, 93, 749–756. doi:10.1038/sj.bjc.6602761.

    Article  CAS  Google Scholar 

  5. Su, Z., Dannull, J., Yang, B. K., Dahm, P., Coleman, D., Yancey, D., et al. (2005). Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. Journal of Immunology (Baltimore, Md. 1950), 174, 3798–3807.

    CAS  Google Scholar 

  6. Dannull, J., Su, Z., Rizzieri, D., Yang, B. K., Coleman, D., Yancey, D., et al. (2005). Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. The Journal of Clinical Investigation, 115, 3623–3633. doi:10.1172/JCI25947.

    Article  CAS  Google Scholar 

  7. Schaft, N., Dorrie, J., Thumann, P., Beck, V. E., Muller, I., Schultz, E. S., et al. (2005). Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. Journal of Immunology (Baltimore, Md.: 1950), 174, 3087–3097.

    CAS  Google Scholar 

  8. Tuyaerts, S., Michiels, A., Corthals, J., Bonehill, A., Heirman, C., de Greef, C., et al. (2003). Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Therapy, 10, 696–706. doi:10.1038/sj.cgt.7700622.

    Article  CAS  Google Scholar 

  9. Van Tendeloo, V. F., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Van Broeckhoven, C., et al. (2001). Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: Superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood, 98, 49–56. doi:10.1182/blood.V98.1.49.

    Article  Google Scholar 

  10. Saeboe-Larssen, S., Fossberg, E., & Gaudernack, G. (2002). mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). Journal of Immunological Methods, 259, 191–203. doi:10.1016/S0022-1759(01)00506-3.

    Article  CAS  Google Scholar 

  11. Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K., & Gilboa, E. (2000). Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Research, 60, 1028–1034.

    CAS  Google Scholar 

  12. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., & Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual Review of Immunology, 20, 621–667. doi:10.1146/annurev.immunol.20.100301.064828.

    Article  CAS  Google Scholar 

  13. Kalady, M. F., Onaitis, M. W., Padilla, K. M., Emani, S., Tyler, D. S., & Pruitt, S. K. (2002). Enhanced dendritic cell antigen presentation in RNA-based immunotherapy. Journal of Surgical Research, 105, 17–24. doi:10.1006/jsre.2002.6435.

    Article  CAS  Google Scholar 

  14. Michiels, A., Tuyaerts, S., Bonehill, A., Corthals, J., Breckpot, K., Heirman, C., Van Meirvenne, S., Dullaers, M., Allard, S., Brasseur, F., van der, B. P., & Thielemans, K. (2005). Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Therapy, 12, 772–782. doi:10.1038/sj.gt.3302471.

    Article  CAS  Google Scholar 

  15. Svane, I. M., Pedersen, A. E., Johansen, J. S., Johnsen, H. E., Nielsen, D., Kamby, C., et al. (2007). Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunology, Immunotherapy, 56, 1485–1499. doi:10.1007/s00262-007-0293-4

    Article  CAS  Google Scholar 

  16. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., et al. (1998). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Medicine, 4, 328–332. doi:10.1038/nm0398-328.

    Article  CAS  Google Scholar 

  17. Tuting, T., Wilson, C. C., Martin, D. M., Kasamon, Y. L., Rowles, J., Ma, D. I., Slingluff, C.L. Jr., Wagner, S. N., van der, B. P., Baar, J., Lotze, M. T., & Storkus, W. J. (1998). Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. Journal of Immunology (Baltimore, Md.: 1950), 160, 1139–1147.

    CAS  Google Scholar 

  18. Kotera, Y., Shimizu, K., & Mule, J. J. (2001). Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Research, 61, 8105–8109.

    CAS  Google Scholar 

  19. Gong, J., Avigan, D., Chen, D., Wu, Z., Koido, S., Kashiwaba, M., et al. (2000). Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 2715–2718. doi:10.1073/pnas.050587197.

    Article  CAS  Google Scholar 

  20. Dullaers, M., Breckpot, K., Van Meirvenne, S., Bonehill, A., Tuyaerts, S., Michiels, A., Straetman, L., Heirman, C., de Greef, C., van der, B. P., & Thielemans, K. (2004). Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: Implications for cancer immunotherapy protocols. Molecular Therapy, 10, 768–779. doi:10.1016/j.ymthe.2004.07.017.

    Article  CAS  Google Scholar 

  21. Nair, S. K., Hull, S., Coleman, D., Gilboa, E., Lyerly, H. K., & Morse, M. A. (1999). Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. International Journal of Cancer, 82, 121–124. doi:10.1002/(SICI)1097-0215(19990702)82:1<121::AID-IJC20>3.0.CO;2-X.

  22. Strobel, I., Berchtold, S., Gotze, A., Schulze, U., Schuler, G., & Steinkasserer, A. (2000). Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Therapy, 7, 2028–2035. doi:10.1038/sj.gt.3301326.

    Article  CAS  Google Scholar 

  23. Chapatte, L., Ayyoub, M., Morel, S., Peitrequin, A. L., Levy, N., Servis, C., et al. (2006). Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Research, 66, 5461–5468. doi:10.1158/0008-5472.CAN-05-4310.

    Article  CAS  Google Scholar 

  24. Storni, T., Ruedl, C., Renner, W. A., & Bachmann, M. F. (2003). Innate immunity together with duration of antigen persistence regulate effector T cell induction. Journal of Immunology (Baltimore, Md.: 1950), 171, 795–801.

    CAS  Google Scholar 

  25. Mu, L. J., Gaudernack, G., Saeboe-Larssen, S., Hammerstad, H., Tierens, A., & Kvalheim, G. (2003). A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scandinavian Journal of Immunology, 58, 578–586. doi:10.1046/j.1365-3083.2003.01333.x.

    Article  CAS  Google Scholar 

  26. Lundqvist, A., Noffz, G., Pavlenko, M., Saeboe-Larssen, S., Fong, T., Maitland, N., et al. (1997). Nonviral and viral gene transfer into different subsets of human dendritic cells yield comparable efficiency of transfection. Journal of Immunotherapy, 25, 445–454. doi:10.1097/00002371-200211000-00001.

    Article  Google Scholar 

  27. Ueno, H., Tcherepanova, I., Reygrobellet, O., Laughner, E., Ventura, C., Palucka, A. K., et al. (2004). Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. Journal of Immunological Methods, 285, 171–180. doi:10.1016/j.jim.2003.11.012.

    Article  CAS  Google Scholar 

  28. Basu, S., & Srivastava, P. K. (2003). Fever-like temperature induces maturation of dendritic cells through induction of hsp90. International Immunology, 15, 1053–1061. doi:10.1093/intimm/dxg104.

    Article  CAS  Google Scholar 

  29. Zheng, H., Benjamin, I. J., Basu, S., & Li, Z. (2003). Heat shock factor 1-independent activation of dendritic cells by heat shock: Implication for the uncoupling of heat-mediated immunoregulation from the heat shock response. European Journal of Immunology, 33, 1754–1762. doi:10.1002/eji.200323687.

    Article  CAS  Google Scholar 

  30. MacAry, P. A., Lindsay, M., Scott, M. A., Craig, J. I., Luzio, J. P., & Lehner, P. J. (2001). Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 3982–3987. doi:10.1073/pnas.071477498.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. G. Gaudernack (The Norwegian Radium Hospital, Oslo, Norway) and Dr. N. Schaft (University Hospital Erlangen, Erlangen, Germany) for providing the plasmids EGFP/pCIpA 102 and pGEM4Z/M1, respectively. This work was supported by the Aase and Ejnar Danielsens Foundation and by various grants from the Cancer Foundation, Grosserer L. F. Foghts and Grosserer Valdemar Foersom and Wife’s Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özcan Met.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Met, Ö., Eriksen, J. & Svane, I.M. Studies on mRNA Electroporation of Immature and Mature Dendritic Cells: Effects on their Immunogenic Potential. Mol Biotechnol 40, 151–160 (2008). https://doi.org/10.1007/s12033-008-9071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9071-6

Keywords

Navigation