Skip to main content

Advertisement

Log in

Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The glutamine synthetase (GS) facilitates cancer cell growth by catalyzing de novo glutamine synthesis. This enzyme removes ammonia waste from the liver following the urea cycle. Since cancer development is associated with dysregulated urea cycles, there has been no investigation of GS’s role in ammonia clearance. Here, we demonstrate that, although GS expression is increased in the setting of β-catenin oncogenic activation, it is insufficient to clear the ammonia waste burden due to the dysregulated urea cycle and may thus be unable to prevent cancer formation. In vivo study, a total of 165 male Swiss albino mice allocated in 11 groups were used, and liver cancer was induced by p-DAB. The activity of GS was evaluated along with the relative expression of mTOR, β-catenin, MMP-14, and GS genes in liver samples and HepG2 cells using qRT-PCR. Moreover, the cytotoxicity of the NH3 scavenger phenyl acetate (PA) and/or GS-inhibitor L-methionine sulfoximine (MSO) and the migratory potential of cells was assessed by MTT and wound healing assays, respectively. The Swiss target prediction algorithm was used to screen the mentioned compounds for probable targets. The treatment of the HepG2 cell line with PA plus MSO demonstrated strong cytotoxicity. The post-scratch remaining wound area (%) in the untreated HepG2 cells was 2.0%. In contrast, the remaining wound area (%) in the cells treated with PA, MSO, and PA + MSO for 48 h was 61.1, 55.8, and 78.5%, respectively. The combination of the two drugs had the greatest effect, resulting in the greatest decrease in the GS activity, β-catenin, and mTOR expression. MSO and PA are both capable of suppressing mTOR, a key player in the development of HCC, and MMP-14, a key player in the development of HCC. PA inhibited the MMP-14 enzyme more effectively than MSO, implying that PA might be a better way to target HCC as it inhibited MMP-14 more effectively than MSO. A large number of abnormal hepatocytes (5%) were found to be present in the HCC mice compared to mice in the control group as determined by the histopathological lesions scores. In contrast, PA, MSO, and PA + MSO showed a significant reduction in the hepatic lesions score either when protecting the liver or when treating the liver. The molecular docking study indicated that PA and MSO form a three-dimensional structure with NF-κB and COX-II, blocking their ability to promote cancer and cause gene mutations. PA and MSO could be used to manipulate GS activities to modulate ammonia levels, thus providing a potential treatment for ammonia homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Claeys W, et al. A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep. 2022;12(1):1–16.

    Article  Google Scholar 

  2. Fiati Kenston SS, Song X, Li Z, Zhao J. Mechanistic insight, diagnosis, and treatment of ammonia-induced hepatic encephalopathy. J Gastroenterol Hepatol. 2019;34(1):31–9.

    Article  Google Scholar 

  3. Limón ID, Angulo-Cruz I, Sánchez-Abdon L, Patricio-Martínez A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front Neurosci. 2021;15: 578922.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nardelli S, et al. Muscle alterations are associated with minimal and overt hepatic encephalopathy in patients with liver cirrhosis. Hepatology. 2019;70(5):1704–13.

    Article  PubMed  Google Scholar 

  5. Canbay A, Sowa J-P. L-ornithine L-aspartate (LOLA) as a novel approach for therapy of non-alcoholic fatty liver disease. Drugs. 2019;79(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int. 2020;140: 104809.

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Zhu H, Sun W, Yang X, Nie Q, Fang X. Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells. Cancer Cell Int. 2021;21(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hou Y, Hu S, Li X, He W, Wu G. Amino acid metabolism in the liver: nutritional and physiological significance. Amin Acids Nutr Heal. 2020. https://doi.org/10.1007/978-3-030-45328-2_2.

    Article  Google Scholar 

  9. Dai W, et al. Glutamine synthetase limits β-catenin–mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest. 2022. https://doi.org/10.1172/JCI161408.

    Article  PubMed  PubMed Central  Google Scholar 

  10. J. B. Spinelli, 2019 “Investigating the Fate of Ammonia in Breast Cancer.” Harvard University.

  11. Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science. 2017;80:941–6.

    Article  Google Scholar 

  12. Liu L, Huang Z, Chen J, Wang J, Wang S. Protein phosphatase 2A activation mechanism contributes to JS-K induced caspase-dependent apoptosis in human hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2018;37(1):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Monga SP. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 2015;148(7):1294–310.

    Article  CAS  PubMed  Google Scholar 

  14. Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017;36(16):2191–201.

    Article  CAS  Google Scholar 

  15. Yecies JL, Manning BD. mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med. 2011;89(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  16. Mafi S, et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front Immunol. 2022;12:5724.

    Article  Google Scholar 

  17. Henderson N, Markwick LJ, Elshaw SR, Freyer AM, Knox AJ, Johnson SR. Collagen I and thrombin activate MMP-2 by MMP-14-dependent and-independent pathways: implications for airway smooth muscle migration. Am J Physiol Cell Mol Physiol. 2007;292(4):L1030–8.

    Article  CAS  Google Scholar 

  18. Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A. Matrix Metalloproteinases: a challenging paradigm of cancer management. Semin Cancer Biol. 2019;56:100–15.

    Article  CAS  Google Scholar 

  19. Angius F, Floris A. Liposomes and MTT cell viability assay: an incompatible affair. Toxicol Vitr. 2015;29(2):314–9.

    Article  CAS  Google Scholar 

  20. Pathak S, Kumar Das J, Jyoti Biswas S, Khuda-Bukhsh AR. Protective potentials of a potentized homeopathic drug, Lycopodium-30, in ameliorating azo dye induced hepatocarcinogenesis in mice. Mol Cell Biochem. 2006;285(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  21. Wei MX, Liu JM, Gadal F, Yi P, Liu J, Crepin M. Sodium phenylacetate (NaPa) improves the TAM effect on glioblastoma experimental tumors by inducing cell growth arrest and apoptosis. Anticancer Res. 2007;27(2):953–8.

    CAS  PubMed  Google Scholar 

  22. Chiu M, et al. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. Br J Cancer. 2014;111(6):1159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Attia AA, et al. Amygdalin potentiates the anti-cancer effect of Sorafenib on Ehrlich ascites carcinoma and ameliorates the associated liver damage. Sci Rep. 2022;12(1):1–9.

    Article  Google Scholar 

  24. Gobe G, Zhang X-J, Willgoss DA, Schoch E, Hogg NA, Endre ZH. Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol. 2000;11(3):454–67.

    Article  CAS  PubMed  Google Scholar 

  25. S. Martinotti and E. Ranzato, 2019 “Scratch wound healing assay,” in Epidermal cells, Springer. pp. 225–229

  26. Yadollah-Damavandi S, et al. Topical Hypericum perforatum improves tissue regeneration in full-thickness excisional wounds in diabetic rat model evidence-based complement. Altern Med. 2015. https://doi.org/10.1155/2015/245328.

    Article  Google Scholar 

  27. Bancroft JD, Layton C. The hematoxylins and eosin Bancroft’s theory. Pract Histol Tech. 2012;7:173–86.

    Google Scholar 

  28. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50(6):1007–15.

    Article  CAS  PubMed  Google Scholar 

  29. Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy–therapeutic perspectives. Metab Brain Dis. 2014;29(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Matsumoto S, Häberle J, Kido J, Mitsubuchi H, Endo F, Nakamura K. Urea cycle disorders—update. J Hum Genet. 2019;64(9):833–47.

    Article  Google Scholar 

  31. Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 2010;9(19):3884–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kurmi K, Haigis MC. Nitrogen metabolism in cancer and immunity. Trends Cell Biol. 2020;30(5):408–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64.

    Article  CAS  PubMed  Google Scholar 

  34. Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis. 2017;40(6):757–69.

    Article  CAS  PubMed  Google Scholar 

  35. Rojas Á, García-Lozano MR, Gil-Gómez A, Romero-Gómez M, Ampuero J. Glutaminolysis-ammonia-urea cycle axis, non-alcoholic fatty liver disease progression and development of novel therapies. J Clin Transl Hepatol. 2022;10(2):356.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020;52(9):1496–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang B, et al. Glutamine and intestinal barrier function. Amino Acids. 2015;47(10):2143–54.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang J, Srivastava S, Zhang J. Starve cancer cells of glutamine: break the spell or make a hungry monster? Cancers (Basel). 2019;11(6):804.

    Article  CAS  PubMed  Google Scholar 

  39. Ye J, et al. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth. J Cancer Res Clin Oncol. 2018;144(5):821–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kung H-N, Marks JR, Chi J-T. Glutamine synthetase is a genetic determinant of cell type–specific glutamine independence in breast epithelia. PLoS Genet. 2011;7(8): e1002229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlageter M, Terracciano LM, D’Angelo S, Sorrentino P. Histopathology of hepatocellular carcinoma. World J Gastroenterol WJG. 2014;20(43):15955.

    Article  PubMed  Google Scholar 

  42. Sakamoto M. Early HCC: diagnosis and molecular markers. J Gastroenterol. 2009;44(19):108–11.

    Article  CAS  Google Scholar 

  43. Furusawa A, et al. Ovarian cancer therapeutic potential of glutamine depletion based on GS expression. Carcinogenesis. 2018;39(6):758–66.

    Article  CAS  Google Scholar 

  44. Li B, et al. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine. 2019;39:239–54.

    Article  PubMed  Google Scholar 

  45. Jin H, et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. Elife. 2020;9: e56749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang C, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;574(7777):268–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15(7):1258–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, et al. Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine-monophosphate–activated protein kinase alpha/mammalian target of rapamycin axis in mice. Hepatology. 2019;69(4):1614–31.

    Article  CAS  Google Scholar 

  49. Xiang Y, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015;125(6):2293–306.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yuan H, et al. RHBDF1 regulates APC-mediated stimulation of the epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells in part via the Wnt/β-catenin signalling pathway. Exp Cell Res. 2018;368(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  51. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound repair Regen. 2009;17(2):153–62.

    Article  PubMed  Google Scholar 

  52. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound repair Regen. 2008;16(5):585–601.

    Article  PubMed  Google Scholar 

  53. Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res. 2005;304(1):274–86.

    Article  CAS  PubMed  Google Scholar 

  54. Matus CE, et al. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor. Exp Dermatol. 2016;25(9):694–700.

    Article  CAS  PubMed  Google Scholar 

  55. Yousuf Y, Amini-Nik S. The role of myeloid lineage cells on skin healing and skin regeneration. J Tissue Sci Eng. 2017;8(2):1000202.

    Article  Google Scholar 

  56. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol. 2008;40(6–7):1334–47.

    Article  CAS  PubMed  Google Scholar 

  57. Robitaille AM, et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science. 2013;80:1320–3.

    Article  Google Scholar 

  58. Zhou B-BS, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8(10):806–23.

    Article  CAS  Google Scholar 

  59. Nguyen T-L, Durán RV. Glutamine metabolism in cancer therapy. Cancer Drug Resist. 2018;1(3):126–38.

    Google Scholar 

  60. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G. F. Weber, 2015 “Drugs that Suppress Proliferation,” in Molecular Therapies of Cancer, Springer, pp. 113–162.

  62. Russell JO, Monga SP. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu Rev Pathol Mech Dis. 2018;13:351–78.

    Article  CAS  Google Scholar 

  63. Spear BT, Jin L, Ramasamy S, Dobierzewska A. Transcriptional control in the mammalian liver: liver development, perinatal repression, and zonal gene regulation. Cell Mol Life Sci C. 2006;63(24):2922–38.

    Article  CAS  Google Scholar 

  64. Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The canonical wnt pathway as a key regulator in liver development, differentiation and homeostatic renewal. Genes (Basel). 2020;11(10):1163.

    Article  CAS  PubMed  Google Scholar 

  65. Rehman AU, et al. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin Drug Discov. 2023. https://doi.org/10.1080/17460441.2023.2171396.

    Article  PubMed  Google Scholar 

  66. Molla MHR, et al. Integrative ligand-based pharmacophore modeling, virtual screening, and molecular docking simulation approaches identified potential lead compounds against pancreatic cancer by targeting FAK1. Pharmaceuticals. 2023;16(1):120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. H. Shu-Hsien, Y. U. Chih-Wen, and C. H. Lin, 2005 “Hydrogen peroxide functions as a stress signal in plants,” Bot. Bull. Acad. Sin. 46

  68. Kinra M, Joseph A, Nampoothiri M, Arora D, Mudgal J. Inhibition of NLRP3-inflammasome mediated IL-1β release by phenylpropanoic acid derivatives: In-silico and in-vitro approach. Eur J Pharm Sci. 2021;157: 105637.

    Article  CAS  PubMed  Google Scholar 

  69. Dawood KM, Farghaly TA. Thiadiazole inhibitors: a patent review. Expert Opin Ther Pat. 2017;27(4):477–505.

    Article  CAS  Google Scholar 

  70. Paoli P, Giannoni E, Chiarugi P. 2013 “Anoikis molecular pathways and its role in cancer progression.” Biochim Biophys Acta BBA-Mol Cell Res. 2013;1833(12):3481–98.

    Article  CAS  Google Scholar 

  71. Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci. 2020;144(3):151–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NA.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AE, TES; Formal analysis; AN, AIY; Investigation: MY, MAEA; Project administration: TES, AE, AN Software: AE, AEN TES; Validation TES, AE, AIY, MY; Visualization: MAEA, AEN; Writing—original draft: AE, TES Writing—review and editing: AE; all authors have read and agreed to the published version of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Alaa Elmetwalli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All experimental procedures used are carried out following Alexandria University's animal care guidelines and the National Science Council's Guide for the Care and Use of Laboratory Animals.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmetwalli, A., Nageh, A., Youssef, A.I. et al. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer. Med Oncol 41, 38 (2024). https://doi.org/10.1007/s12032-023-02250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02250-z

Keywords

Navigation