Skip to main content

Advertisement

Log in

Cancer stem cells in colorectal cancer and the association with chemotherapy resistance

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The incidence and mortality of colorectal cancer (CRC) have always been among the highest in the world, although the diagnosis and treatment are becoming more and more advanced. At present, the main reason is that patients have acquired drug resistance after long-term conventional drug treatment. An increasing number of evidences confirm the existence of cancer stem cells (CSCs), which are a group of special cells in cancer, only a small part of cancer cells. These special cell populations are not eliminated by chemotherapeutic drugs and result in tumor recurrence and metastasis after drug treatment. CSCs have the ability of self-renewal and multidirectional differentiation, which is associated with the occurrence and development of cancer. CSCs can be screened and identified by related surface markers. In this paper, the characteristic surface markers of CSCs in CRC and the related mechanism of drug resistance will be discussed in detail. A better understanding of the mechanism of CSCs resistance to chemotherapy may lead to better targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data and materials could be found in our published paper.

References

  1. Siegel RL, et al. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Siegel RL, et al. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  3. Jemal A, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  4. Vodenkova S, et al. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.

    Article  CAS  PubMed  Google Scholar 

  5. Andrei L, et al. Advanced technological tools to study multidrug resistance in cancer. Drug Resist Updat. 2020;48:100658.

    Article  PubMed  Google Scholar 

  6. Maugeri-Saccà M, et al. Cancer stem cells and chemosensitivity. Clin Cancer Res. 2011;17(15):4942–7.

    Article  PubMed  Google Scholar 

  7. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ma L, et al. ABCG2 is required for self-renewal and chemoresistance of CD133-positive human colorectal cancer cells. Tumour Biol. 2016;37(9):12889–96.

    Article  CAS  PubMed  Google Scholar 

  9. Munro MJ, et al. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2018;71(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  10. Dontu G, et al. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15(5):193–7.

    Article  CAS  PubMed  Google Scholar 

  11. Collins AT, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.

    Article  CAS  PubMed  Google Scholar 

  12. O’Brien CA, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.

    Article  CAS  PubMed  Google Scholar 

  13. Catalano V, et al. CD133 as a target for colon cancer. Expert Opin Ther Targets. 2012;16(3):259–67.

    Article  CAS  PubMed  Google Scholar 

  14. Fan CW, et al. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies. Cell Death Dis. 2013;4(10):e828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yeung TM, et al. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A. 2010;107(8):3722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep. 2017;50(6):285–98.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Najafi M, et al. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–95.

    Article  CAS  PubMed  Google Scholar 

  18. Morgan RG, et al. Targeting LGR5 in colorectal cancer: therapeutic gold or too plastic? Br J Cancer. 2018;118(11):1410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McClanahan T, et al. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther. 2006;5(4):419–26.

    Article  CAS  PubMed  Google Scholar 

  20. Barker N, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.

    Article  CAS  PubMed  Google Scholar 

  21. Barker N, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  22. Baker AM, et al. Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. Sci Rep. 2015;5:8654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YS, et al. Lgr5 promotes cancer stemness and confers chemoresistance through ABCB1 in colorectal cancer. Biomed Pharmacother. 2013;67(8):791–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wu W, et al. Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget. 2016;7(49):81144–55.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi S, et al. LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. Stem Cells. 2012;30(12):2631–44.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Othman N, et al. Role of CD44 in breast cancer. Breast Dis. 2020;39(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  27. Basakran NS. CD44 as a potential diagnostic tumor marker. Saudi Med J. 2015;36(3):273–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang L, et al. The role of CD44 and cancer stem cells. Methods Mol Biol. 2018;1692:31–42.

    Article  CAS  PubMed  Google Scholar 

  29. Morath I, et al. CD44: more than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81(Pt A):166–73.

    Article  CAS  PubMed  Google Scholar 

  30. Toden S, et al. Cancer stem cell-associated miRNAs serve as prognostic biomarkers in colorectal cancer. JCI Insight. 2019; 4(6).

  31. Todaro M, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342–56.

    Article  CAS  PubMed  Google Scholar 

  32. Yoon C, et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin Cancer Res. 2014;20(15):3974–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matzke-Ogi A, et al. Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology. 2016;150(2):513-25.e10.

    Article  PubMed  Google Scholar 

  34. Jang JW, et al. Potential mechanisms of CD133 in cancer stem cells. Life Sci. 2017;184:25–9.

    Article  CAS  PubMed  Google Scholar 

  35. Corbeil D, et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem. 2000;275(8):5512–20.

    Article  CAS  PubMed  Google Scholar 

  36. Giebel B, et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood. 2004;104(8):2332–8.

    Article  CAS  PubMed  Google Scholar 

  37. Akbari M, et al. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int. 2020;44(2):368–80.

    Article  PubMed  Google Scholar 

  38. Hatina J, et al. Ovarian cancer stem cell heterogeneity. Adv Exp Med Biol. 2019;1139:201–21.

    Article  CAS  PubMed  Google Scholar 

  39. Ricci-Vitiani L, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  CAS  PubMed  Google Scholar 

  40. Aghajani M, et al. New emerging roles of CD133 in cancer stem cell: signaling pathway and miRNA regulation. J Cell Physiol. 2019;234(12):21642–61.

    Article  CAS  PubMed  Google Scholar 

  41. Soeda A, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 2009;28(45):3949–59.

    Article  CAS  PubMed  Google Scholar 

  42. Cai C, et al. Hypoxia-inducible factor-1α and CD133 predicts pathological complete response and survival for locally advanced rectal cancer patients after neoadjuvant chemoradiotherapy. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017;46(1):36–43.

    PubMed  Google Scholar 

  43. Todaro M, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):389–402.

    Article  CAS  PubMed  Google Scholar 

  44. Todaro M, et al. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138(6):2151–62.

    Article  CAS  PubMed  Google Scholar 

  45. Galizia G, et al. Combined CD133/CD44 expression as a prognostic indicator of disease-free survival in patients with colorectal cancer. Arch Surg. 2012;147(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  46. Toledo-Guzmán ME, et al. ALDH as a stem cell marker in solid tumors. Curr Stem Cell Res Ther. 2019;14(5):375–88.

    Article  PubMed  Google Scholar 

  47. Tomita H, et al. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kashii-Magaribuchi K, et al. Induced expression of cancer stem cell markers ALDH1A3 and Sox-2 in hierarchical reconstitution of apoptosis-resistant human breast cancer cells. Acta Histochem Cytochem. 2016;49(5):149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng H, et al. ALDH1A3 affects colon cancer in vitro proliferation and invasion depending on CXCR4 status. Br J Cancer. 2018;118(2):224–32.

    Article  CAS  PubMed  Google Scholar 

  50. Flahaut M, et al. Aldehyde dehydrogenase activity plays a key role in the aggressive phenotype of neuroblastoma. BMC Cancer. 2016;16(1):781.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mele L, et al. Evaluation and isolation of cancer stem cells using ALDH activity assay. Methods Mol Biol. 2018;1692:43–8.

    Article  CAS  PubMed  Google Scholar 

  52. Khorrami S, et al. Verification of ALDH activity as a biomarker in colon cancer stem cells-derived HT-29 cell line. Iran J Cancer Prev. 2015;8(5):e3446.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Toledo-Guzmn ME, et al. ALDH as a stem cell marker in solid tumors. Curr Stem Cell Res Ther. 2019;14(5):375–88.

    Article  Google Scholar 

  54. Yaghjyan L, et al. Associations of mammographic breast density with breast stem cell marker-defined breast cancer subtypes. Cancer Causes Control. 2019;30(10):1103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet. 2000;38(4):291–304.

    Article  CAS  PubMed  Google Scholar 

  56. Dylla SJ, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE. 2008;3(6):e2428.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vasiliou V, et al. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004;36(2):279–99.

    Article  CAS  PubMed  Google Scholar 

  58. Mordvinov VA, et al. ABC transporters in the liver fluke Opisthorchis felineus. Mol Biochem Parasitol. 2017;216:60–8.

    Article  CAS  PubMed  Google Scholar 

  59. Mächtel R, et al. An integrated transport mechanism of the maltose ABC importer. Res Microbiol. 2019;170(8):321–37.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu X. ABC family transporters. Adv Exp Med Biol. 2019;1141:13–100.

    Article  CAS  PubMed  Google Scholar 

  61. Amawi H, et al. ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol. 2019;1141:549–80.

    Article  CAS  PubMed  Google Scholar 

  62. El-Awady R, et al. The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Front Pharmacol. 2016;7:535.

    PubMed  Google Scholar 

  63. Cui H, et al. ABC transporter inhibitors in reversing multidrug resistance to chemotherapy. Curr Drug Targets. 2015;16(12):1356–71.

    Article  CAS  PubMed  Google Scholar 

  64. Hu Y, et al. Reversal effects of local anesthetics on P-glycoprotein-mediated cancer multidrug resistance. Anticancer Drugs. 2017;28(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  65. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.

    Article  CAS  PubMed  Google Scholar 

  66. Ashley N, et al. Cellular polarity modulates drug resistance in primary colorectal cancers via orientation of the multidrug resistance protein ABCB1. J Pathol. 2019;247(3):293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zolnerciks JK, et al. The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle. FASEB J. 2014;28(10):4335–46.

    Article  CAS  PubMed  Google Scholar 

  68. Peterson BG, et al. High-content screening of clinically tested anticancer drugs identifies novel inhibitors of human MRP1 (ABCC1). Pharmacol Res. 2017;119:313–26.

    Article  CAS  PubMed  Google Scholar 

  69. Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278(18):3226–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leslie EM, et al. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204(3):216–37.

    Article  CAS  PubMed  Google Scholar 

  71. Pascolo L, et al. Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochem Biophys Res Commun. 2003;303(1):259–65.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson ZL, Chen J. ATP binding enables substrate release from multidrug resistance protein 1. Cell. 2018;172(1–2):81-9.e10.

    Article  CAS  PubMed  Google Scholar 

  73. Hooijberg JH, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999;59(11):2532–5.

    CAS  PubMed  Google Scholar 

  74. Leonard GD, et al. The role of ABC transporters in clinical practice. Oncologist. 2003;8(5):411–24.

    Article  CAS  PubMed  Google Scholar 

  75. Nasr R, et al. Molecular analysis of the massive GSH transport mechanism mediated by the human multidrug resistant protein 1/AB,CC1. Sci Rep. 2020;10(1):7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Doyle LA, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fujita K, Ichida K. ABCG2 as a therapeutic target candidate for gout. Expert Opin Ther Targets. 2018;22(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  78. Sarkadi B et al. The ABCG2/BCRP transporter and its variants - from structure to pathology. FEBS Lett. 2020.

  79. Polgar O, et al. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol. 2008;4(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  80. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. AAPS J. 2015;17(1):65–82.

    Article  CAS  PubMed  Google Scholar 

  81. Goodell MA, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou S, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    Article  CAS  PubMed  Google Scholar 

  83. Wang XK, et al. Afatinib enhances the efficacy of conventional chemotherapeutic agents by eradicating cancer stem-like cells. Cancer Res. 2014;74(16):4431–45.

    Article  CAS  PubMed  Google Scholar 

  84. Rahmani F, et al. Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol. 2018;233(2):811–7.

    Article  CAS  PubMed  Google Scholar 

  85. Chikazawa N, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res. 2010;30(6):2041–8.

    CAS  PubMed  Google Scholar 

  86. Vermeulen L, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  87. Yamada T, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000;60(17):4761–6.

    CAS  PubMed  Google Scholar 

  88. Ghandadi M, et al. Wnt-β-catenin signaling pathway, the Achilles’ heels of cancer multidrug resistance. Curr Pharm Des. 2019;25(39):4192–207.

    Article  CAS  PubMed  Google Scholar 

  89. Itaba N, et al. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice. Sci Rep. 2015;5:16169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Urushibara S, et al. WNT/β-catenin signaling inhibitor IC-2 suppresses sphere formation and sensitizes colorectal cancer cells to 5-fluorouracil. Anticancer Res. 2017;37(8):4085–91.

    CAS  PubMed  Google Scholar 

  91. Hu YB, et al. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene. 2019;38(11):1951–65.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng X, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019;110:473–81.

    Article  CAS  PubMed  Google Scholar 

  93. Vinson KE, et al. The Notch pathway in colorectal cancer. Int J Cancer. 2016;138(8):1835–42.

    Article  CAS  PubMed  Google Scholar 

  94. Baker A, et al. Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival. Oncogene. 2018;37(33):4489–504.

    Article  CAS  PubMed  Google Scholar 

  95. Meng RD, et al. gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69(2):573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang R, et al. Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Mol Med Rep. 2015;12(2):2417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li L, et al. KCTD12 regulates colorectal cancer cell stemness through the ERK pathway. Sci Rep. 2016;6:20460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fanale D, et al. Non-coding RNAs functioning in colorectal cancer stem cells. Adv Exp Med Biol. 2016;937:93–108.

    Article  CAS  PubMed  Google Scholar 

  99. Hutvgner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.

    Article  Google Scholar 

  100. Yu Y, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 2012;33(1):68–76.

    Article  PubMed  Google Scholar 

  101. Siemens H, et al. Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget. 2013;4(9):1399–415.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang J, et al. The role of MicroRNAs in the chemoresistance of breast cancer. Drug Dev Res. 2015;76(7):368–74.

    Article  CAS  PubMed  Google Scholar 

  103. Ye J, et al. MicroRNA-141 inhibits tumor growth and minimizes therapy resistance in colorectal cancer. Mol Med Rep. 2017;15(3):1037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Song B, et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 2010;9:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu XT, et al. MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer. 2012;106(7):1320–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shen WW, et al. MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med. 2013;91(8):989–1000.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang J, et al. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer. 2011;117(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  108. Yu Y, et al. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer. 2015;14:98.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dou J, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res. 2016;8(1):98–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ouyang S, et al. LncRNA BCAR4, targeting to miR-665/STAT3 signaling, maintains cancer stem cells stemness and promotes tumorigenicity in colorectal cancer. Cancer Cell Int. 2019;19:72.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhao Y, et al. P53–R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J Exp Clin Cancer Res. 2019;38(1):379.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhou H, et al. LncRNA-cCSC1 modulates cancer stem cell properties in colorectal cancer via activation of the Hedgehog signaling pathway. J Cell Biochem. 2020;121(3):2510–24.

    Article  CAS  PubMed  Google Scholar 

  113. Yu Y, et al. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol Cancer. 2017;16(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84.

    Article  CAS  PubMed  Google Scholar 

  115. Cao H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211(8):557–69.

    Article  CAS  PubMed  Google Scholar 

  116. Wong SHM, et al. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22.

    Article  PubMed  Google Scholar 

  117. Hu JL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weng W, Goel A. Curcumin and colorectal cancer: an update and current perspective on this natural medicine. Semin Cancer Biol. 2020.

  119. Toden S, et al. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis. 2015;36(3):355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Machida K. Existence of cancer stem cells in hepatocellular carcinoma: myth or reality? Hepatol Int. 2017;11(2):143–7.

    Article  PubMed  Google Scholar 

  121. Choi JE, et al. Expression of epithelial-mesenchymal transition and cancer stem cell markers in colorectal adenocarcinoma: clinicopathological significance. Oncol Rep. 2017;38(3):1695–705.

    Article  CAS  PubMed  Google Scholar 

  122. Hwang WL, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology. 2011; 141(1):279–91, 91.e1–5.

  123. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.

    Article  CAS  PubMed  Google Scholar 

  124. Vira D, et al. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev. 2012;31(3–4):733–51.

    Article  CAS  PubMed  Google Scholar 

  125. Vasan N, et al. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gonzalez H, et al. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Luo M, et al. Stem cell quiescence and its clinical relevance. World J Stem Cells. 2020;12(11):1307–26.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Francescangeli F, et al. A pre-existing population of ZEB2(+) quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. J Exp Clin Cancer Res. 2020;39(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dieter SM, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9(4):357–65.

    Article  CAS  PubMed  Google Scholar 

  130. Walko CM, Lindley C. Capecitabine: a review. Clin Ther. 2005;27(1):23–44.

    Article  CAS  PubMed  Google Scholar 

  131. Weitz J, et al. Colorectal cancer. Lancet. 2005;365(9454):153–65.

    Article  PubMed  Google Scholar 

  132. Ba-Sang DZ, et al. A network meta-analysis on the efficacy of sixteen targeted drugs in combination with chemotherapy for treatment of advanced/metastatic colorectal cancer. Oncotarget. 2016;7(51):84468–79.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Xie YH, et al. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhou Y, et al. Cancer stem cells in progression of colorectal cancer. Oncotarget. 2018;9(70):33403–15.

    Article  PubMed  Google Scholar 

  135. Sand A, et al. WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 2020;472:119–31.

    Article  CAS  PubMed  Google Scholar 

  136. Barker N, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.

    Article  CAS  PubMed  Google Scholar 

  137. Lv L, et al. Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells. Tumour Biol. 2016;37(7):8811–24.

    Article  CAS  PubMed  Google Scholar 

  138. Gottesman MM, et al. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  139. Corrêa S, et al. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer. 2012;12:303.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yu Y, et al. Down-regulation of miR-21 induces differentiation of chemoresistant colon cancer cells and enhances susceptibility to therapeutic regimens. Transl Oncol. 2013;6(2):180–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81472275), Natural Science Foundation of Guangdong Province (2020A151501303, 2014A030313542), Major projects of key platforms for colleges and universities in Guangdong Province (2020KTSCX045, 2019KTSCX046), and Research Fund of Guangdong Medical University (GDMUZ2020001).

Author information

Authors and Affiliations

Authors

Contributions

XL and QLH conducted data analysis and drafted manuscripts. ZQL, QZ, RPX, and HBY were involved in research design and data collection. Finally, YLD and WZ revised the manuscript.

Corresponding author

Correspondence to Wei Zhu.

Ethics declarations

Conflict of interest

All authors announce that they have no conflicts of interest.

Consent for publication

All listed authors were actively involved in the study, reviewed, and approved the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., He, Q., Li, Z. et al. Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Med Oncol 38, 43 (2021). https://doi.org/10.1007/s12032-021-01488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01488-9

Keywords

Navigation