Skip to main content

Advertisement

Log in

Cancer stem cells, microRNAs, and therapeutic strategies including natural products

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Embryonic stem cells divide continuously and differentiate into organs through the expression of specific transcription factors at specific time periods. Differentiated adult stem cells on the other hand remain in quiescent state and divide by receiving cues from the environment (extracellular matrix or niche), as in the case of wound healing from tissue injury or inflammation. Similarly, it is believed that cancer stem cells (CSCs), forming a smaller fraction of the tumor bulk, also remain in a quiescent state. These cells are capable of initiating and propagating neoplastic growth upon receiving environmental cues, such as overexpression of growth factors, cytokines, and chemokines. Candidate CSCs express distinct biomarkers that can be utilized for their identification and isolation. This review focuses on the known and candidate cancer stem cell markers identified in various solid tumors and the promising future of disease management and therapy targeted at these markers. The review also provides details on the differential expression of microRNAs (miRNAs), and the miRNA- and natural product-based therapies that could be applied for the treatment of cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Croker, A. K., & Allan, A. L. (2008). Cancer stem cells: implications for the progression and treatment of metastatic disease. Journal of Cellular and Molecular Medicine, 12, 374–390.

    PubMed  CAS  Google Scholar 

  2. Felthaus, O., Ettl, T., Gosau, M., Driemel, O., Brockhoff, G., Reck, A., et al. (2011). Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines. Biochemical and Biophysical Research Communications, 407, 28–33.

    PubMed  CAS  Google Scholar 

  3. Ganguli-Indra, G., Wasylyk, C., Liang, X., Millon, R., Leid, M., Wasylyk, B., et al. (2009). CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PLoS One, 4, e5367.

    PubMed  Google Scholar 

  4. Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.

    PubMed  CAS  Google Scholar 

  5. Boman, B. M., & Huang, E. (2008). Human colon cancer stem cells: a new paradigm in gastrointestinal oncologyogy. Journal of Clinical Oncologyogy, 26, 2828–2838.

    Google Scholar 

  6. Jagani, Z., & Khosravi-Far, R. (2008). Cancer stem cells and impaired apoptosis. Advances in Experimental Medicine and Biology, 615, 331–344.

    PubMed  CAS  Google Scholar 

  7. Joshua, B., Kaplan, M. J., Doweck, I., Pai, R., Weissman, R., Prince, M., et al. (2012). Frequency of cells expressing CD 44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head & Neck, 34, 42–49.

    Google Scholar 

  8. Bhaijee, F., Pepper, D. J., Pitman, K. T., & Bell, D. (2012). Cancer stem cells in head and neck squamous cell carcinoma: a review of current knowledge and future applications. Head & Neck, 34, 894–899.

    Google Scholar 

  9. Graziano, A., d’ Aquino, R., Tirino, V., Desiderio, V., Rossi, A., & Pirozzi, G. (2008). The stem cell hypothesis in head and neck cancer. Journal of Cellular Biochemistry, 103, 408–412.

    PubMed  CAS  Google Scholar 

  10. Jensen, K. B., Jones, J., & Watt, F. M. (2008). A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 272, 23–31.

    PubMed  CAS  Google Scholar 

  11. Harper, L. J., Piper, K., Common, J., Fortune, F., & Mackenzie, I. C. (2007). Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology and Medicine, 36, 594–603.

    PubMed  Google Scholar 

  12. Sayed, S. I., Dwivedi, R. C., Katna, R., Garg, A., Pathak, K. A., Nutting, C. M., et al. (2011). Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer. Oral Oncology, 47, 237–243.

    PubMed  Google Scholar 

  13. Shakib, K., Schrattenholz, A., & Soskic, V. (2011). Stem cells in head and neck squamous cell carcinoma. British Journal of Oral and Maxillofacial Surgery, 49, 503–506.

    PubMed  Google Scholar 

  14. Adams, J. M., Kelly, P. N., Dakic, A., Carotta, S., Nutt, S. L., & Strasser, A. (2008). Role of “cancer stem cells” and cell survival in tumor development and maintenance. Cold Spring Harbor Symposia on Quantitative Biology, 73, 451–459.

    PubMed  CAS  Google Scholar 

  15. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66, 1883–1896.

    PubMed  CAS  Google Scholar 

  16. Ailles, L., & Prince, M. (2009). Cancer stem cells in head and neck squamous cell carcinoma. Methods in Molecular Biology, 568, 175–193.

    PubMed  Google Scholar 

  17. Albers, A. E., Chen, C., Köberle, B., Qian, X., Klussmann, J. P., Wollenberg, B., et al. (2012). Stem cells in squamous head and neck cancer. Critical Reviews in Oncology/Hematology, 81, 224–240.

    PubMed  Google Scholar 

  18. Chen, Z. G. (2009). The cancer stem cell concept in progression of head and neck cancer. Journal of Oncology, 2009, 894064.

    PubMed  Google Scholar 

  19. Furusawa, J., Zhang, H., Vural, E., Stone, A., Fukuda, S., Oridate, N., et al. (2011). Distinct epigenetic profiling in head and neck squamous cell carcinoma stem cells. Otolaryngology and Head and Neck Surgery, 144, 900–909.

    Google Scholar 

  20. Akhtar, K., Bussen, W., & Scott, S. P. (2009). Cancer stem cells - from initiation to elimination, how far have we reached? International Journal of Oncology, 34, 1491–1503.

    PubMed  Google Scholar 

  21. Al-Ejeh, F., Smart, C. E., Morrison, B. J., Chenevix-Trench, G., Lopez, J. A., Lakhani, S. R., et al. (2011). Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis, 32, 650–658.

    PubMed  CAS  Google Scholar 

  22. Clarke, M. F. (2005). Epigenetic regulation of normal and cancer stem cells. Annals of the New York Academy of Sciences, 1044, 90–93.

    PubMed  Google Scholar 

  23. McDermott, S. P., & Wicha, M. S. (2010). Targeting breast cancer stem cells. Molecular Oncology, 4, 404–419.

    PubMed  CAS  Google Scholar 

  24. Bapat, S. A. (2007). Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204–213.

    PubMed  CAS  Google Scholar 

  25. Bleau, A.-M., Huse, J. T., & Holland, E. C. (2009). The ABCG2 resistance network of glioblastoma. Cell Cycle, 8, 2936–2944.

    PubMed  Google Scholar 

  26. Garvalov, B. K., & Acker, T. (2011). Cancer stem cells: a new framework for the design of tumor therapies. Journal of Molecular Medicine, 89, 95–107.

    PubMed  Google Scholar 

  27. Spillane, J. B., & Henderson, M. A. (2007). Cancer stem cells: a review. ANZ Journal of Surgery, 77, 464–468.

    PubMed  Google Scholar 

  28. Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    PubMed  CAS  Google Scholar 

  29. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature, 367, 645–648.

    PubMed  CAS  Google Scholar 

  30. Dick, J. (2005). Acute myeloid leukemia stem cells. Annals of the New York Academy of Sciences, 1044, 1–5.

    PubMed  Google Scholar 

  31. Dick, J. (2008). Stem cell concepts renew cancer research. Blood, 112, 4793–4807.

    PubMed  CAS  Google Scholar 

  32. Houghton, J., Morozov, A., Smirnova, I., & Wang, T. C. (2007). Stem cells and cancer. Seminars in Cancer Biology, 17, 191–203.

    PubMed  CAS  Google Scholar 

  33. Bonnet, D. (2005). Cancer stem cells: AMLs show the way. Biochemical Society Transactions, 33, 1531–1533.

    PubMed  CAS  Google Scholar 

  34. Bonnet, D. (2005). Cancer stem cells: lessons from leukemia. Cell Proliferation, 38, 357–361.

    PubMed  CAS  Google Scholar 

  35. Schatton, T., Frank, N. Y., & Frank, M. H. (2009). Identification and targeting of cancer stem cells. Bioessays, 31, 1038–1049.

    PubMed  CAS  Google Scholar 

  36. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    PubMed  CAS  Google Scholar 

  37. Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36, 59–72.

    PubMed  CAS  Google Scholar 

  38. Basak, S., Veena, M. S., Oh, S., Huang, G., Srivatsan, E. S., Huang, M., et al. (2009). The malignant pleural effusion as a model to investigate intratumoral heterogeneity in lung cancer. PLoS One, 4, e5884.

    PubMed  Google Scholar 

  39. Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18, 460–466.

    PubMed  CAS  Google Scholar 

  40. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.

    PubMed  CAS  Google Scholar 

  41. Baumann, M., & Krause, M. (2010). CD 44: a cancer stem cell-related biomarker with predictive potential for radiotherapy. Clinical Cancer Research, 16, 5091–5093.

    PubMed  CAS  Google Scholar 

  42. Pries, R., Witrkopf, N., Trenkle, T., Nitsch, S. M., & Wollenberg, B. (2008). Potential stem cell marker CD 44 is constitutively expressed in permanent cell lines of head and neck cancer. In Vivo, 22, 89–92.

    PubMed  Google Scholar 

  43. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I., & Clarke, M. F. (2004). Therapeutic implications of cancer stem cells. Current Opinion in Genetics & Development, 14, 43–47.

    CAS  Google Scholar 

  44. Chan, K. S., Volkmer, J.-P., & Weissman, I. (2010). Cancer stem cells in bladder cancer: a revisited and evolving concept. Current Opinion in Urology, 20, 393–397.

    PubMed  Google Scholar 

  45. Chen, S. Y., Huang, Y. C., Liu, S. P., Tsai, F. J. L., Shyu, W. C., & Lin, S. Z. (2011). An overview of concepts for cancer stem cells. Cell Transplantation, 20, 113–120.

    PubMed  CAS  Google Scholar 

  46. Cho, R. W., & Clarke, M. F. (2008). Recent advances in cancer stem cells. Current Opinion in Genetics & Development, 18, 48–53.

    CAS  Google Scholar 

  47. Diehn, M., Cho, R. W., & Clarke, M. F. (2009). Therapeutic implications of the cancer stem cell hypothesis. Seminars in Radiation Oncology, 19, 78–86.

    PubMed  Google Scholar 

  48. Hollier, B. G., Evans, K., & Mani, S. A. (2009). The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. Journal of Mammary Gland Biology and Neoplasia, 14, 29–43.

    PubMed  Google Scholar 

  49. Almhanna, K., & Philip, P. A. (2011). Defining new paradigms for the treatment of pancreatic cancer. Current Treatment Options in Oncology, 12, 111–125.

    PubMed  Google Scholar 

  50. Deonarain, M. P., Kousparou, C. A., & Epenetos, A. A. (2009). Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs, 1, 12–25.

    PubMed  Google Scholar 

  51. Dimov, I., Visnjic, M., & Stefanovic, V. (2010). Urothelial cancer stem cells. The Scientific World Journal, 10, 1400–1415.

    CAS  Google Scholar 

  52. Vries, R. G. J., Huch, M., & Clevers, H. (2010). Stem cells and cancer of the stomach and intestine. Molecular Oncology, 4, 373–384.

    PubMed  Google Scholar 

  53. Gedye, C., Davidson, A. J., Elmes, M. R., Cebon, J., Bolton, D., & David, I. D. (2010). Cancer stem cells in urologic cancers. Urologic Oncology, 28, 585–590.

    PubMed  Google Scholar 

  54. Okamoto, A., Chikamatsu, K., Sakakura, K., Hatsushika, K., Takahashi, G., & Masuyama, K. (2009). Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncology, 45, 633–639.

    PubMed  CAS  Google Scholar 

  55. Kokko, L. L., Hurme, S., Maula, S. M., Alanen, K., Grenman, R., Kinnunen, I., et al. (2011). Significance of site-specific prognosis of cancer stem cell marker CD 44 in head and neck squamous-cell carcinoma. Oral Oncology, 47, 510–516.

    PubMed  CAS  Google Scholar 

  56. Chikamatsu, K., Takahashi, G., Sakakura, K., Ferrone, S., & Masuyama, K. (2011). Immunoregulatory properties of CD 44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head & Neck, 33, 208–215.

    Google Scholar 

  57. Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., et al. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Science, 101, 293–299.

    PubMed  CAS  Google Scholar 

  58. Sarkar, F. H., Li, Y., Wang, Z., & Kong, D. (2009). Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chirurgica, 64, 489–500.

    PubMed  CAS  Google Scholar 

  59. Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29, 4741–4751.

    PubMed  CAS  Google Scholar 

  60. Davis, S. J., Divi, V., Owen, J. H., Bradford, C. R., Carey, T. E., Papagerakis, S., et al. (2010). Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. Archives of Otolaryngology-Head & Neck Surgery, 136, 1260–1266.

    Google Scholar 

  61. Chen, C., Wei, Y., Hummel, M., Hoffmann, T. K., Gross, M., Kaufmann, A. M., et al. (2011). Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One, 6, e16466.

    PubMed  CAS  Google Scholar 

  62. Mack, B., & Gires, O. (2008). CD 44s and CD 44v6 expression in head and neck epithelia. PLoS One, 3, e3360.

    PubMed  Google Scholar 

  63. Jijiwa, M., Demir, H., Gupta, S., Leung, C., Joshi, K., Orozco, N., et al. (2011). CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One, 6, e24217.

    PubMed  CAS  Google Scholar 

  64. Gaviraghi, M., Tunici, P., Valensin, S., Rossi, M., Giordano, C., Magnoni, L., et al. (2011). Pancreatic cancer sphere are more than just aggregates of stem marker-positive cells. Bioscience Reports, 31, 45–55.

    PubMed  CAS  Google Scholar 

  65. Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., et al. (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.

    PubMed  CAS  Google Scholar 

  66. van den Hoogen, C., van der Horst, G., Cheung, H., Buijs, J. T., Pelger, R. C., & van der Pluijm, G. (2011). The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clinical and Experimental Matastasis, 28, 615–625.

    CAS  Google Scholar 

  67. Prince, M. E. P., & Ailles, L. E. (2008). Cancer stem cells in head and neck squamous cell cancer. Journal of Clinical Oncology, 26, 2871–2875.

    PubMed  Google Scholar 

  68. Chen, H., Zhou, L., Dou, T., Wan, G., Tang, H., & Tian, J. (2011). BMI1’S maintenance of the proliferative capacity of laryngeal cancer stem cells. Head & Neck, 33, 1115–1125.

    Google Scholar 

  69. Zhou, L., Wei, X., Cheng, L., Tian, J., & Jiang, J. J. (2007). CD 133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope, 117, 455–460.

    PubMed  CAS  Google Scholar 

  70. Monroe, M. M., Anderson, E. C., Clayburgh, D. R., & Wong, M. H. (2011). Cancer stem cells in head and neck squamous cell carcinoma. Journal of Oncology, 2011, 762780.

    PubMed  Google Scholar 

  71. Zhang, Q., Shi, S., Yen, Y., Brown, J., Ta, J. Q., & Le, A. D. (2010). A subpopulation of CD 133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Letters, 289, 151–160.

    PubMed  CAS  Google Scholar 

  72. Ricci-Vitiani, L., Fabrizi, E., Palio, E., & De Maria, R. (2009). Colon cancer stem cells. Journal of Molecular Medicine, 87, 1097–1104.

    PubMed  Google Scholar 

  73. Hubbard, S. A., & Gargett, C. E. (2010). A cancer stem cell origin for human endometrial carcinoma? Reproduction, 140, 23–32.

    PubMed  CAS  Google Scholar 

  74. Zhang, J., Luo, N., Luo, Y., Peng, Z., Zhang, T., & Li, S. (2011). MicroRNA-150 inhibits human CD 133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. International Journal of Oncology, 40, 747–756.

    PubMed  Google Scholar 

  75. Eramo, A., Haas, T. L., & De Maria, R. (2010). Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 29, 4625–4635.

    PubMed  CAS  Google Scholar 

  76. O’Brien, C. A., Kreso, A., & Dick, J. (2009). Cancer stem cells in solid tumors: an overview. Seminars in Radiation Oncology, 19, 71–77.

    PubMed  Google Scholar 

  77. O’Brien, C. A., Kreso, A., & Jamieson, C. H. M. (2010). Cancer stem cells and self-renewal. Clinical Cancer Research, 16, 3113–3120.

    PubMed  Google Scholar 

  78. Bednar, F., & Simeone, D. M. (2009). Pancreatic cancer stem cells and relevance to cancer treatments. Journal of Cellular Biochemistry, 107, 40–45.

    PubMed  CAS  Google Scholar 

  79. Dunning, N. L., Laversin, S. A., Miles, A. K., & Rees, R. C. (2011). Immunotherapy of prostate cancer: should we be targeting stem cells and EMT? Cancer Immunology, Immunotherapy, 60, 1181–1193.

    PubMed  CAS  Google Scholar 

  80. Yang, J.-P., Liu, Y., Zhong, W., Yu, D., Wen, L. J., & Jin, C. S. (2011). Chemo resistance of CD 133+ cancer stem cells in laryngeal carcinoma. Chinese Medical Journal, 124, 1055–1060.

    PubMed  CAS  Google Scholar 

  81. Zhang, H., Li, W., Nan, F., Ren, F., Wang, H., Xu, Y., et al. (2011). MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochemical and Biophysical Research Communications, 404, 273–278.

    PubMed  CAS  Google Scholar 

  82. Alison, M. R., Islam, S., & Wright, N. A. (2010). Stem cells in cancer: instigators and propagators? Journal of Cell Science, 123, 2357–2368.

    PubMed  CAS  Google Scholar 

  83. Padhye, S. S., Guin, S., Yao, H. P., Zhou, Y. Q., Zhang, R., & Wang, M. H. (2011). Sustained expression of the RON receptor tyrosine kinase by pancreatic cancer stem cells as a potential targeting moiety for antibody-directed chemotherapeutics. Molecular Pharmaceutics, 8, 2310–2319.

    PubMed  CAS  Google Scholar 

  84. Lonardo, E., Hermann, P. C., & Heeschen, C. (2010). Pancreatic cancer stem cells—update and future perspectives. Molecular Oncology, 4, 431–442.

    PubMed  Google Scholar 

  85. Lee, C. J., Dosch, J., & Simeone, D. M. (2008). Pancreatic cancer stem cells. Journal of Clinical Oncology, 26, 2806–2812.

    PubMed  Google Scholar 

  86. Soltanian, S., & Matin, M. M. (2011). Cancer stem cells and cancer therapy. Tumour Biology, 32, 425–440.

    PubMed  Google Scholar 

  87. Miyoshi, N., Ishii, H., Sekimoto, M., Haraguchi, N., Doki, Y., & Mori, M. (2010). Properties and identification of cancer stem cells: a changing insight into intractable cancer. Surgery Today, 40, 608–613.

    PubMed  Google Scholar 

  88. Zhou, J., & Zhang, Y. (2008). Cancer stem cells: Models, mechanisms and implications for improved treatment. Cell Cycle, 7, 1360–1370.

    PubMed  CAS  Google Scholar 

  89. Richard, V., & Pillai, M. R. (2010). The stem cell code in oral epithelial tumorigenesis: “the cancer stem cell shift hypothesis. Biochimica et Biophysica Acta, 1806, 146–162.

    PubMed  CAS  Google Scholar 

  90. Mishra, L., Banker, T., Murray, J., Byers, S., Thenappan, A., He, A. R., et al. (2009). Liver stem cells and hepatocellular carcinoma. Hepatology, 49, 318–329.

    PubMed  Google Scholar 

  91. Yao, Z., & Mishra, L. (2009). Cancer stem cells and hepatocellular carcinoma. Cancer Biology & Therapy, 8, 1691–1698.

    CAS  Google Scholar 

  92. Yi, S. Y., & Nan, K. J. (2008). Tumor-initiating stem cells in liver cancer. Cancer Biology & Therapy, 7, 325–330.

    CAS  Google Scholar 

  93. Oishi, N., & Wang, X. W. (2011). Novel therapeutic strategies for targeting liver cancer stem cells. International Journal of Biological Sciences, 7, 517–535.

    PubMed  CAS  Google Scholar 

  94. Sell, S., & Leffert, H. L. (2008). Liver cancer stem cells. Journal of Clinical Oncology, 26, 2800–2805.

    PubMed  Google Scholar 

  95. Sales, K. M., Winslet, M. C., & Seifalian, A. M. (2007). Stem cells and cancer: an overview. Stem Cell Review and Reports, 3, 249–255.

    CAS  Google Scholar 

  96. Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, 17, 313–319.

    PubMed  CAS  Google Scholar 

  97. Bussolati, B., Bruno, S., Grange, C., Ferrando, U., & Camussi, G. (2008). Identification of a tumor-initiating stem cell population in human renal carcinomas. The FASEB Journal, 22, 3696–3705.

    CAS  Google Scholar 

  98. Alison, M. R., Lim, S. M. L., & Nicholson, L. J. (2011). Cancer stem cells: problems for therapy? The Journal of Pathology, 223, 147–161.

    PubMed  CAS  Google Scholar 

  99. Lee, T. K. W., Castilho, A., Ma, S., & Ng, I. O. L. (2009). Liver cancer stem cells: implications for a new therapeutic target. Liver International, 29, 955–965.

    PubMed  CAS  Google Scholar 

  100. Chen, Y. C., Chen, Y. W., Hsu, H. S., Tseng, L. M., Huang, P. I., Lu, K. H., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385, 307–313.

    PubMed  CAS  Google Scholar 

  101. Chen, Y. C., Chang, C. J., Hsu, H. S., Chen, Y. W., Tai, L. K., Tsengm, L. M., et al. (2010). Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncology, 46, 158–165.

    PubMed  CAS  Google Scholar 

  102. Alison, M. R., Guppy, N. J., Lim, S. M. L., & Nicholson, L. J. (2010). Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology, 222, 335–344.

    PubMed  Google Scholar 

  103. Visus, C., Ito, D., Amoscato, A., Maciejewska-Franczak, M., Abdelsalem, A., Dhir, R., et al. (2007). Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Research, 67, 10538–10545.

    PubMed  CAS  Google Scholar 

  104. Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.

    PubMed  CAS  Google Scholar 

  105. Douville, J., Beaulieu, R., & Balicki, D. (2009). ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells and Development, 18, 17–25.

    PubMed  CAS  Google Scholar 

  106. Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9, 2450–2457.

    PubMed  CAS  Google Scholar 

  107. Lawson, J. C., Blatch, G. L., & Edkins, A. L. (2009). Cancer stem cells in breast cancer and metastasis. Breast Cancer Research and Treatment, 118, 241–254.

    PubMed  Google Scholar 

  108. Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews, 7, 292–306.

    PubMed  CAS  Google Scholar 

  109. Ohi, Y., Umekita, Y., Yoshioka, T., Souda, M., Rai, Y., Sagara, Y., et al. (2011). Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology, 59, 776–780.

    PubMed  Google Scholar 

  110. Subramaniam, D., Ramalingam, S., Houchen, C. W., & Anant, S. (2010). Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Reviews in Medicinal Chemistry, 10, 359–371.

    PubMed  CAS  Google Scholar 

  111. Sullivan, J. P., Minna, J., & Shay, J. W. (2010). Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Reviews, 29, 61–72.

    PubMed  Google Scholar 

  112. Clay, M. R., Tabor, M., Owen, J., Carey, T. E., Bradford, C. R., Wolf, G. T., et al. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & Neck, 32, 1195–1201.

    Google Scholar 

  113. Krishnamurthy, S., Dong, Z., Vodopyanov, D., Imai, A., Helman, J., Prince, M. E., et al. (2010). Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Research, 70, 9969–9978.

    PubMed  CAS  Google Scholar 

  114. Gupta, V., & Bamezai, R. N. K. (2010). Human pyruvate kinase M2: a multifunctional protein. Protein Science, 19, 2031–2044.

    PubMed  CAS  Google Scholar 

  115. Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334, 1278–1283.

    PubMed  CAS  Google Scholar 

  116. Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 43, 969–980.

    CAS  Google Scholar 

  117. Hathurusinghe, H. R., Goonetilleke, K. S., & Siriwardena, A. K. (2007). Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Annals of Surgical Oncology, 14, 2714–2720.

    PubMed  Google Scholar 

  118. Rayess, H., Wang, M. B., & Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International Journal of Cancer, 130, 1715–1725.

    Google Scholar 

  119. Yu, C. C., Lo, W. L., Chen, Y. W., Huang, P. I., Hsu, H. S., Tseng, L. M., et al. (2011). Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. Journal of Oncology. doi:10.1155/2011/609259

  120. Hermann, P. C., Bhaskar, S., Cioffi, M., & Heeschen, C. (2010). Cancer stem cells in solid tumors. Seminars in Cancer Biology, 20, 77–84.

    PubMed  CAS  Google Scholar 

  121. Ouyang, G., Wang, Z., Fang, X., Liu, J., & Yang, C. J. (2010). Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cellular and Molecular Life Sciences, 67, 2605–2618.

    PubMed  CAS  Google Scholar 

  122. Reiman, J. M., Knutson, K. L., & Radisky, D. C. (2010). Immune promotion of epithelial–mesenchymal transition and generation of breast cancer stem cells. Cancer Research, 70, 3005–3008.

    PubMed  Google Scholar 

  123. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.

    PubMed  CAS  Google Scholar 

  124. Cakouros, D., Raices, R. M., Gronthos, S., & Glackin, C. A. (2010). Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. Journal of Cellular Biochemistry, 110, 1288–1298.

    PubMed  CAS  Google Scholar 

  125. Yang, M. H., Hsu, D. S. S., Wang, H. W., Wang, H. J., Lan, H. Y., Yang, W. H., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biology, 12, 982–992.

    PubMed  Google Scholar 

  126. Cheng, L., Bao, S., & Rich, J. N. (2010). Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemistry & Pharmacology, 80, 654–665.

    CAS  Google Scholar 

  127. Sun, S., & Wang, Z. (2011). Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. International Journal of Cancer, 129, 2337–2348.

    CAS  Google Scholar 

  128. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.

    PubMed  CAS  Google Scholar 

  129. Wu, C., Wei, Q., Utomo, V., Nadesan, P., Whetstone, H., Kandel, R., et al. (2007). Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Research, 67, 8216–8222.

    PubMed  CAS  Google Scholar 

  130. Song, J., Chang, I., Chen, Z., Kang, M., & Wang, C. Y. (2010). Characterization of side populations in HNSCC: highly invasive, chemo resistant and abnormal Wnt signaling. PLoS One, 5, e11456.

    PubMed  Google Scholar 

  131. Sun, G., Fujii, M., Sonoda, A., Tokumaru, Y., Matsunaga, T., & Habu, N. (2010). Identification of stem-like cells in head and neck cancer cell lines. Anticancer Research, 30, 2005–2010.

    PubMed  Google Scholar 

  132. Tabor, M. H., Clay, M. R., Owen, J. H., Bradford, C. R., Carey, T. E., Wolf, G. T., et al. (2011). Head and neck cancer stem cells: the side population. Laryngoscope, 121, 527–533.

    PubMed  CAS  Google Scholar 

  133. Ozvegy-Laczka, C., Cserepes, J., Elkind, N. B., & Sarkadi, B. (2005). Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resistance Updates, 8, 15–26.

    PubMed  Google Scholar 

  134. Zhang, P., Zhang, Y., Mao, L., Zhang, Z., & Chen, W. (2009). Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Letters, 277, 227–234.

    PubMed  CAS  Google Scholar 

  135. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    PubMed  CAS  Google Scholar 

  136. Bapat, S. A. (2010). Human ovarian cancer stem cells. Reproduction, 140, 33–41.

    PubMed  CAS  Google Scholar 

  137. Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.

    PubMed  CAS  Google Scholar 

  138. Ding, X-wei, Wu, J-hua, & Jiang, C-ping. (2010). ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sciences, 86, 631–637.

    PubMed  CAS  Google Scholar 

  139. Fong, M. Y., & Kakar, S. S. (2010). The role of cancer stem cells and the side population in epithelial ovarian cancer. Histology and Histopathology, 25, 113–120.

    PubMed  CAS  Google Scholar 

  140. Kratz, J. R., Yagui-Beltrán, A., & Jablons, D. M. (2010). Cancer stem cells in lung tumorigenesis. The Annals of Thoracic Surgery, 89, S2090–S2095.

    PubMed  Google Scholar 

  141. Kyo, S., Maida, Y., & Inoue, M. (2011). Stem cells in endometrium and endometrial cancer: accumulating evidence and unresolved questions. Cancer Letters, 308, 123–133.

    PubMed  CAS  Google Scholar 

  142. Moserle, L., Ghisi, M., Amadori, A., & Indraccolo, S. (2010). Side population and cancer stem cells: therapeutic implications. Cancer Letters, 288, 1–9.

    PubMed  CAS  Google Scholar 

  143. Lavon, I., Zrihan, D., Granit, A., Einstein, O., Fainstein, N., Cohen, M. A., et al. (2010). Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro-Oncology, 12, 422–433.

    PubMed  CAS  Google Scholar 

  144. Yu, X. F., Zou, J., Bao, Z. J., & Dong, J. (2011). miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World Journal of Gastroenterology, 42, 4711–4717.

    Google Scholar 

  145. Shi, L., Zhang, J., Pan, T., Zhou, J., Gong, W., Liu, N., et al. (2010). MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research, 1312, 120–126.

    PubMed  CAS  Google Scholar 

  146. Schraivogel, D., Weinmann, L., Beier, D., Tabatabai, G., Eichner, A., Zhu, J. Y., et al. (2011). CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO Journal, 30, 4309–4322.

    PubMed  CAS  Google Scholar 

  147. Gal, H., Pandi, G., Kanner, A. A., Ram, Z., Lithwick-Yanai, G., Amariglio, N., et al. (2008). MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochemical and Biophysical Research Communications, 376, 86–90.

    PubMed  CAS  Google Scholar 

  148. Ji, J., & Wang, X. W. (2012). Identification of cancer stem cell-related microRNAs in hepatocellular carcinoma. Methods in Molecular Biology, 826, 163–175.

    PubMed  Google Scholar 

  149. Jung, C. J., Iyengar, S., Blahnik, K. R., Ajuha, T. P., Jiang, J. X., Farnham, P. J., et al. (2011). Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS One, 6, 27740.

    Google Scholar 

  150. Meng, F., Glaser, S. S., Francis, H., Demorrow, S., Han, Y., Passarini, J. D., et al. (2012). Functional analysis of microRNAs in human hepatocellular cancer stem cells. Journal of Cellular and Molecular Medicine, 16, 160–173.

    PubMed  CAS  Google Scholar 

  151. Ma, S., Tang, K. H., Chan, Y. P., Lee, T. K., Kwan, P. S., Castilho, A., et al. (2010). miR-130b Promotes CD 133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell, 7, 694–707.

    PubMed  CAS  Google Scholar 

  152. Jung, D. E., Wen, J., Oh, T., & Song, S. Y. (2011). Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas, 40, 1180–1187.

    PubMed  CAS  Google Scholar 

  153. Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One, 4, e6816.

    PubMed  Google Scholar 

  154. Yu, F., Jiao, Y., Zhu, Y., Wang, Y., Zhu, J., Cui, X., et al. (2012). MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial–mesenchymal transition in breast tumor-initiating cells. Journal of Biological Chemistry, 287, 465–473.

    PubMed  CAS  Google Scholar 

  155. Zhu, Y., Yu, F., Jiao, Y., Feng, J., Tang, W., Yao, H., et al. (2011). Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clinical Cancer Research, 17, 7105–7115.

    PubMed  CAS  Google Scholar 

  156. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.

    PubMed  CAS  Google Scholar 

  157. Zhang, X., Wan, G., Mlotshwa, S., Vance, V., Berger, F. G., Chen, H., et al. (2010). Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Research, 70, 7176–7186.

    PubMed  CAS  Google Scholar 

  158. Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138, 592–603.

    PubMed  CAS  Google Scholar 

  159. Leung, M., Rosen, D., Fields, S., Cesano, A., & Budman, D. R. (2011). Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Molecular Medicine, 17, 854–862.

    PubMed  CAS  Google Scholar 

  160. Mukhopadhyay, A., Curtin, N., Plummer, R., & Edmondson, R. J. (2011). PARP inhibitors and epithelial ovarian cancer: an approach to targeted chemotherapy and personalized medicine. British Journal of Obstetrics and Gynaecology, 118, 429–432.

    PubMed  CAS  Google Scholar 

  161. Alexander, B. M., Wang, X. Z., Niemierko, A., Weaver, D. T., Mak, R. H., Roof, K. S., et al. (2012). DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology and Biological Physics, 83, 164–171.

    CAS  Google Scholar 

  162. Kemp, Z., & Jones, A. (2011). A shift in the treatment of hormone receptor and human epidermal growth factor receptor 2-positive metastatic breast cancer. Advances in Therapy, 28, 603–614.

    PubMed  CAS  Google Scholar 

  163. Javle, M., & Curtin, N. J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 105, 1114–1122.

    PubMed  CAS  Google Scholar 

  164. Weil, M. K., & Chen, A. P. (2011). PARP inhibitor treatment in ovarian and breast cancer. Current Problems in Cancer, 35, 7–50.

    PubMed  Google Scholar 

  165. O’Shaughnessy, J., Osborne, C., Pippen, J. E., Yoffe, M., Patt, D., Rocha, C., et al. (2011). Iniparib plus chemotherapy in metastatic triple-negative breast cancer. The New England Journal of Medicine, 364, 205–214.

    PubMed  Google Scholar 

  166. Barreto-Andrade, J. C., Efimova, E. V., Mauceri, H. J., Beckett, M. A., Sutton, H. G., Darga, T. E., et al. (2011). Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Molecular Cancer Therapeutics, 10, 1185–1193.

    PubMed  CAS  Google Scholar 

  167. Kaye, S. B., Lubinski, J., Matulonis, U., Ang, J. E., Gourley, C., Karlan, B. Y., et al. (2012). Phase II, Open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly(ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. Journal of Clinical Oncology, 30, 372–379.

    PubMed  CAS  Google Scholar 

  168. Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews. Drug Discovery, 10, 868–880.

    PubMed  CAS  Google Scholar 

  169. Carew, J. S., Kelly, K. R., & Nawrocki, S. T. (2011). Mechanisms of mTOR inhibitor resistance in cancer therapy. Targeted Oncology, 6, 17–27.

    PubMed  Google Scholar 

  170. Russell, R. C., Fang, C., & Guan, K. L. (2011). An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development, 138, 3343–3356.

    PubMed  CAS  Google Scholar 

  171. Fang, L., Barekati, Z., Zhang, B., Liu, Z., & Zhong, X. (2011). Targeted therapy in breast cancer: what’s new? Swiss Medical Weekly, 141, w13231.

    PubMed  Google Scholar 

  172. Kudo, M. (2011). Molecular targeted therapy for hepatocellular carcinoma: bench to bedside. Digestive Diseases, 29, 273–277.

    PubMed  Google Scholar 

  173. Liao, Y. M., Kim, C., & Yen, Y. (2011). Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head & Neck Oncology, 3, 22.

    CAS  Google Scholar 

  174. Pal, S. K., & Figlin, R. A. (2011). Future directions of mammalian target of rapamycin (mTOR) inhibitor therapy in renal cell carcinoma. Targeted Oncology, 6, 5–16.

    PubMed  Google Scholar 

  175. Yao, J. C., Shah, M. H., Ito, T., Bohas, C. L., Wolin, E. M., Van Cutsem, E., et al. (2011). Everolimus for advanced pancreatic neuroendocrine tumors. The New England Journal of Medicine, 364, 514–523.

    PubMed  CAS  Google Scholar 

  176. Duran, I., Kortmansky, J., Singh, D., Hirte, H., Kocha, W., Goss, G., et al. (2006). A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. British Journal of Cancer, 95, 1148–1154.

    PubMed  CAS  Google Scholar 

  177. Voss, M. H., Molina, A. M., & Motzer, R. J. (2011). mTOR inhibitors in advanced renal cell carcinoma. Hematology/Oncology Clinics of North America, 25, 835–852.

    PubMed  Google Scholar 

  178. Leonard, G. D., Fojo, T., & Bates, S. E. (2003). The role of ABC transporters in clinical practice. The Oncologist, 8, 411–424.

    PubMed  CAS  Google Scholar 

  179. Binello, E., & Germano, I. M. (2011). Targeting glioma stem cells: a novel framework for brain tumors. Cancer Science, 102, 1958–1966.

    PubMed  CAS  Google Scholar 

  180. Ahmed-Belkacem, A., Pozza, A., Macalou, S., Perez-Victoria, J. M., Boumendjel, A., & Di Pietro, A. (2006). Inhibitors of cancer cell multidrug resistance mediated by breast cancer resistance protein (BCRP/ABCG2). Anti-Cancer Drugs, 17, 239–243.

    PubMed  CAS  Google Scholar 

  181. Fracasso, P. M., Brady, M. F., Moore, D. H., Walker, J. L., Rose, P. G., Letvak, L., et al. (2001). Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. Journal of Clinical Oncology, 19, 2975–2982.

    PubMed  CAS  Google Scholar 

  182. Seiden, M. V., Swenerton, K. D., Matulonis, U., Campos, S., Rose, P., Batist, G., et al. (2002). A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecologic Oncology, 86, 302–310.

    PubMed  CAS  Google Scholar 

  183. Fang, J., Seki, T., & Maeda, H. (2009). Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Advanced Drug Delivery Reviews, 61, 290–302.

    PubMed  CAS  Google Scholar 

  184. Wang, Z., Wang, M., Kar, S., & Carr, B. I. (2009). Involvement of ATM-mediated Chk1/2 and JNK kinase signaling activation in HKH40A-induced cell growth inhibition. Journal of Cellular Physiology, 221, 213–220.

    PubMed  CAS  Google Scholar 

  185. Kosakowska-Cholody, T., Cholody, W. M., Hariprakasha, H. K., Monks, A., Kar, S., Wang, M., et al. (2009). Growth inhibition of hepatocellular carcinoma cells in vitro and in vivo by the 8-methoxy analog of WMC79. Cancer Chemotherpy and Pharmacology, 63, 769–778.

    Google Scholar 

  186. Nelson, E. A., Sharma, S. V., Settleman, J., & Frank, D. A. (2011). A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget, 2, 518–524.

    Google Scholar 

  187. Takakura, A., Nelson, E. A., Haque, N., Humphreys, B. D., Zandi-Nejad, K., Frank, D. A., et al. (2011). Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways. Human Molecular Genetics, 20, 4143–4154.

    PubMed  CAS  Google Scholar 

  188. Yamaki, H., Nakajima, M., Shimotohno, K. W., & Tanaka, N. (2011). Molecular basis for the actions of Hsp90 inhibitors and cancer therapy. Journal of Antibiotics, 64, 635–644.

    PubMed  CAS  Google Scholar 

  189. Modi, S., Stopeck, A., Linden, H., Solit, D., Chandarlapaty, S., Rosen, N., et al. (2011). Hsp90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clinical Cancer Research, 17, 5132–5139.

    PubMed  CAS  Google Scholar 

  190. Rajan, A., Kelly, R. J., Trepel, J. B., Kim, Y. S., Alarcon, S. V., Kummar, S., et al. (2011). A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clinical Cancer Research, 17, 6831–6839.

    PubMed  CAS  Google Scholar 

  191. Basak, S., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Molecular Cancer Therapeutics, 7, 3195–4202.

    PubMed  CAS  Google Scholar 

  192. Stühmer, T., Zöllinger, A., Siegmund, D., Chatterjee, M., Grella, E., Knop, S., et al. (2008). Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia, 22, 1604–1612.

    PubMed  Google Scholar 

  193. Terasaki, M., Sugita, Y., Arakawa, F., Okada, Y., Ohshima, K., & Shigemori, M. (2011). CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathology, 28, 89–97.

    PubMed  CAS  Google Scholar 

  194. Duda, D. G., Kozin, S. V., Kirkpatrick, N. D., Xu, L., Fukumura, D., & Jain, R. K. (2011). CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clinical Cancer Research, 17, 2074–2080.

    PubMed  CAS  Google Scholar 

  195. Singh, B., Cook, K. R., Martin, C., Huang, E. H., Mosalpuria, K., Krishnamurthy, S., et al. (2010). Evaluation of a CXCR4 antagonist in a xenograft mouse model of inflammatory breast cancer. Clinical & Experimental Metastasis, 27, 233–240.

    CAS  Google Scholar 

  196. Ray, P., Lewin, S. A., Mihalko, L. A., Schmidt, B. T., Luker, K. E., & Luker, G. D. (2011). Noninvasive imaging reveals inhibition of ovarian cancer by targeting CXCL12-CXCR4. Neoplasia, 13, 1152–1161.

    PubMed  CAS  Google Scholar 

  197. Dunn, K. L., Espino, P. S., Drobic, B., He, S., & Davie, J. R. (2005). The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochemistry and Cell Biology, 83, 1–14.

    PubMed  CAS  Google Scholar 

  198. Tanaka, S., & Arii, S. (2011). Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategies. Journal of Gastroenterology, 46, 289–296.

    PubMed  CAS  Google Scholar 

  199. Bhoori, S., Toffanin, S., Sposito, C., Germini, A., Pellegrinelli, A., Lampis, A., et al. (2010). Personalized molecular targeted therapy in advanced, recurrent hepatocellular carcinoma after liver transplantation: a proof of principle. Journal of Hepatology, 52, 771–775.

    PubMed  CAS  Google Scholar 

  200. Wilhelm, S. M., Dumas, J., Adnane, L., Lynch, M., Carter, C. A., Schütz, G., et al. (2011). Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. International Journal of Cancer, 129, 245–255.

    CAS  Google Scholar 

  201. Lewis, C. M., Glisson, B. S., Feng, L., Wan, F., Tang, X., Wistuba, I. I., et al. (2012). A phase II study of gefitinib for aggressive cutaneous squamous cell carcinoma of the head and neck. Clinical Cancer Research, 18, 1435–1446.

    PubMed  CAS  Google Scholar 

  202. Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., et al. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncology, 13, 239–246.

    PubMed  CAS  Google Scholar 

  203. Schønnemann, K. R., Yilmaz, M., Bjerregaard, J. K., Nielsen, K. M., & Pfeiffer, P. (2012). Phase II study of biweekly cetuximab in combination with irinotecan as second-line treatment in patients with platinum-resistant gastro-oesophageal cancer. European Journal of Cancer, 48, 510–517.

    PubMed  Google Scholar 

  204. Ha, H. T., Griffith, K. A., Zalupski, M. M., Schuetze, S. M., Thomas, D. G., Lucas, D. R., et al. (2012). Phase II trial of cetuximab in patients with metastatic or locally advanced soft tissue or bone sarcoma. American Journal Clinical Oncology, (in press).

  205. Sarkar, F. H., Li, Y., Wang, Z., Kong, D., & Ali, S. (2010). Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resistance Updates, 3, 57–66.

    Google Scholar 

  206. Yang, Y. P., Chien, Y., Chiou, G. Y., Cherng, J. Y., Wang, M. L., Lo, W. L., et al. (2012). Inhibition of cancer stem cell-like properties and reduced chemo-radio resistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 33, 1462–1476.

    PubMed  CAS  Google Scholar 

  207. Dubrovska, A., Elliott, J., Salamone, R. J., Kim, S., Aimone, L. J., Walker, J. R., et al. (2010). Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clinical Cancer Research, 16, 5692–5702.

    PubMed  CAS  Google Scholar 

  208. Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 269, 291–304.

    PubMed  CAS  Google Scholar 

  209. Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: a review of anti-cancer properties and therapeutic activity in head & neck squamous cell carcinoma. Molecular Cancer, 10, 12.

    PubMed  CAS  Google Scholar 

  210. Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21, 2895–2900.

    PubMed  CAS  Google Scholar 

  211. Wang, L., Shen, Y., Song, R., Sun, Y., Xu, J., & Xu, Q. (2009). An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Molecular Pharmacology, 76, 1238–1245.

    PubMed  CAS  Google Scholar 

  212. Wu, A. W., Basak, S. K., Lai, C., Veena, M. S., Wang, M. B., & Srivatsan, E. S. CD 44 High head and neck cancer cells demonstrate increased cell growth and chemotherapeutic resistance. In: AACR 101st Annual Meeting 2010, Washington, DC, 17–21 Apr 2010.

  213. Kakarala, M., Brenner, D. E., Korkaya, H., Cheng, C., Tazi, K., Ginestier, C., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.

    PubMed  CAS  Google Scholar 

  214. Lim, K. J., Bisht, S., Bar, E. E., Maitra, A., & Eberhart, C. G. (2011). A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology and Therapeutics, 11, 464–473.

    CAS  Google Scholar 

  215. Kanwar, S. S., Yu, Y., Nautiyal, J., Patel, B. B., Padhye, S., Sarkar, F. H., et al. (2011). Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharmacological Research, 28, 827–838.

    CAS  Google Scholar 

  216. Bao, B., Ali, S., Banerjee, S., Wang, Z., Logna, F., Azmi, A. S., et al. (2012). Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Research, 72, 335–345.

    PubMed  CAS  Google Scholar 

  217. Lin, L., Liu, Y., Li, H., Li, P. K., Fuchs, J., Shibata, H., et al. (2011). Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. British Journal of Cancer, 105, 212–220.

    PubMed  CAS  Google Scholar 

  218. Kao, C. L., Huang, P. I., Tsai, P. H., Tsai, M. L., Lo, J. F., Lee, Y. Y., et al. (2009). Resveratrol-induced apoptosis and increased radiosensitivity in CD 133-positive cells derived from atypical teratoid/rhabdoid tumor. International Journal of Radiation Oncology, Biology, and Physics, 74, 219–228.

    CAS  Google Scholar 

  219. Lu, K. H., Chen, Y. W., Tsai, P. H., Tsai, M. L., Lee, Y. Y., Chiang, C. Y., et al. (2009). Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Child’s Nervous System, 25, 543–550.

    PubMed  Google Scholar 

  220. Lee, D. H., Iwanski, G. B., & Thoennissen, N. H. (2010). Cucurbitacin: ancient compound shedding new light on cancer treatment. Scientific World Journal, 10, 413–418.

    PubMed  CAS  Google Scholar 

  221. Blaskovich, M. A., Sun, J. L., Cantor, A., Turkson, J., Jove, R., & Sebt, S. M. (2003). Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathways inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research, 63, 1270–1279.

    PubMed  CAS  Google Scholar 

  222. Chen, Y. W., Chen, K. H., Huang, P. I., Chen, Y. C., Chiou, G. Y., Lo, W. L., et al. (2010). Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma–derived CD 44(+)ALDH1(+) cells. Molecular Cancer Therapeutics, 11, 2879–2892.

    Google Scholar 

  223. Chang, C. J., Chiang, C. H., Song, W. S., Tsai, S. K., Woung, L. C., Chang, C. H., et al. (2012). Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells. Childs Nervous System, 28, 363–373.

    Google Scholar 

  224. Hsu, H. S., Huang, P. I., Chang, Y. L., Tzao, C., Chen, Y. W., Shih, H. C., et al. (2011). Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD 133-positive cells. Cancer, 117, 2970–2985.

    PubMed  CAS  Google Scholar 

  225. Gunn, E. J., Williams, J. T., Huynh, D. T., Iannotti, M. J., Han, C., Barrios, F. J., et al. (2011). The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leukemia & Lymphoma, 52, 1085–1097.

    CAS  Google Scholar 

  226. Huff, C. A., Matsui, W. H., Smith, B. D., & Jones, R. J. (2006). Strategies to eliminate cancer stem cells: clinical implications. European Journal of Cancer, 42, 1293–1297.

    PubMed  CAS  Google Scholar 

  227. Xu, Q., Liu, G., Yuan, X., Xu, M., Wang, H., Ji, J., et al. (2009). Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells, 27, 1734–1740.

    PubMed  CAS  Google Scholar 

  228. Short, J. J., & Curiel, D. T. (2009). Oncologyytic adenoviruses targeted to cancer stem cells. Molecular Cancer Therapeutics, 8, 2096–2102.

    PubMed  CAS  Google Scholar 

  229. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD 44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12, 1167–1174.

    PubMed  Google Scholar 

  230. Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signature in prostate cancer cells. PLoS One, 5, e12445.

    PubMed  Google Scholar 

  231. Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 17, 211–215.

    PubMed  CAS  Google Scholar 

  232. Uziel, T., Karginov, F. V., Xie, S., Parker, J., Wang, Y. D., Gajjar, A., et al. (2009). The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 106, 2812–2817.

    PubMed  CAS  Google Scholar 

  233. Yu, C. C., Chen, Y. W., Chiou, G. Y., Tsai, L. L., Huang, P. I., Chang, C. Y., et al. (2011). MicroRNA let-7a represses chemo resistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncology, 47, 202–210.

    PubMed  CAS  Google Scholar 

  234. Lo, W. L., Yu, C. C., Chiou, G. Y., Chen, Y. W., Huang, P. I., Chien, C. S., et al. (2011). MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. The Journal of Pathology, 223, 482–495.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eugene Han for his help with the figures. The study was supported by funds from VAGLAHS, West Los Angeles Surgical Education Research Center, UCLA Academic Senate (Marilene B. Wang), Departments of Medicine (Raj K. Batra) and head and Neck Surgery (MBW), and NIH (R21 CA116826-01 to MBW) and Merit grant from the Veterans Administration, Washington, DC (Eri S. Srivatsan).

Conflict of interest

None of the authors have any financial interest in this review article

Financial disclosure

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raj K. Batra or Eri S. Srivatsan.

Additional information

Marilene B. Wang, Raj K. Batra, and Eri S. Srivatsan are members of Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90073

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vira, D., Basak, S.K., Veena, M.S. et al. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev 31, 733–751 (2012). https://doi.org/10.1007/s10555-012-9382-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9382-8

Keyword

Navigation