Skip to main content

Advertisement

Log in

Friend or foe, the role of EGR-1 in cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Early growth response-1 (EGR-1), also termed NEFI-A and Krox-24, as a multi-domain protein is implicated in several vital physiological processes, including development, metabolism, cell growth and proliferation. Previous studies have implied that EGR-1 was producing in response to the tissue injury, immune response and fibrosis. Meanwhile, emerging studies stressed the pronounced correlation of EGR-1 and human cancers. Nevertheless, the intricate mechanisms of cancer-reduce EGR-1 alteration still poorly characterized. In the review, we evaluated the effects of EGR-1 in tumor cell proliferation, apoptosis, migration, invasion and tumor microenvironment, and then, we dwell on the intricate signaling pathways that EGR-1 involved in. The aberrantly expressed of EGR-1 in cancers are expected to provide a new cancer therapy strategy or a new marker for assessing treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol. 2013;229(2):286–97. https://doi.org/10.1002/path.4131.

    Article  CAS  PubMed  Google Scholar 

  2. Pagel JI, Deindl E. Disease progression mediated by egr-1 associated signaling in response to oxidative stress. Int J Mol Sci. 2012;13(10):13104–17. https://doi.org/10.3390/ijms131013104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Braddock M. The transcription factor Egr-1: a potential drug in wound healing and tissue repair. Ann Med. 2001;33(5):313–8.

    Article  CAS  Google Scholar 

  4. Thiel G, Rossler OG. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors. Pharmacol Res. 2017;117:166–76. https://doi.org/10.1016/j.phrs.2016.12.029.

    Article  CAS  PubMed  Google Scholar 

  5. Nag JK, Bar-Shavit R. Transcriptional landscape of PARs in epithelial malignancies. Int J Mol Sci. 2018;19(11):E3451. https://doi.org/10.3390/ijms19113451.

    Article  CAS  PubMed  Google Scholar 

  6. Rettino A, Rafanelli F, Genovese G, Goracci M, Cifarelli RA, Cittadini A, Sgambato A. Identification of Sp1 and GC-boxes as transcriptional regulators of mouse Dag1 gene promoter. Am J Physiol Cell Physiol. 2009;297(5):C1113–23. https://doi.org/10.1152/ajpcell.00189.2009.

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Chen D, Zhang J. Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS ONE. 2012;7(10):e46784. https://doi.org/10.1371/journal.pone.0046784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Courey AJ, Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988;55(5):887–98.

    Article  CAS  Google Scholar 

  9. Huang RP, Fan Y, Ni Z, Mercola D, Adamson ED. Reciprocal modulation between Sp1 and Egr-1. J Cell Biochem. 1997;66(4):489–99.

    Article  CAS  Google Scholar 

  10. Ahmed MM, Sells SF, Venkatasubbarao K, et al. Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 1997;272:33056–61.

    Article  CAS  Google Scholar 

  11. Virolle T, Adamson ED, Baron V, et al. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol. 2001;3:1124–8. https://doi.org/10.1038/ncb1201-1124.

    Article  CAS  PubMed  Google Scholar 

  12. Shi Q. Resveratrol-responsive CArG elements from the Egr-1 promoter for the induction of GADD45α to arrest the G2/M transition. Methods Mol Biol. 2019;1895:111–22. https://doi.org/10.1007/978-1-4939-8922-5_9.

    Article  CAS  PubMed  Google Scholar 

  13. Wong KE, Ngai SC, Chan KG, et al. Curcumin nanoformulations for colorectal cancer: a review. Front Pharmacol. 2019;10:152. https://doi.org/10.3389/fphar.2019.00152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Auyeung KK, Cho CH. A novel anticancer effect of Astragalus saponins: transcriptional activation of NSAID-activated gene. Int J Cancer. 2009;125:1082–91. https://doi.org/10.1002/ijc.24397.

    Article  CAS  PubMed  Google Scholar 

  15. Secchiero P, Rimondi E, di Iasio MG, et al. C-Reactive protein downregulates TRAIL expression in human peripheral monocytes via an Egr-1-dependent pathway. Clin Cancer Res. 2013;19:1949–59. https://doi.org/10.1158/1078-0432.ccr-12-3027.

    Article  CAS  PubMed  Google Scholar 

  16. Thiel J, Alter C, Luppus S, et al. MicroRNA-183 and microRNA-96 are associated with autoimmune responses by regulating T cell activation. J Autoimmun. 2019;96:94–103. https://doi.org/10.1016/j.jaut.2018.08.010.

    Article  CAS  PubMed  Google Scholar 

  17. Wang WD, Li R, Chen ZT, et al. Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Sci. 2005;96:706–12. https://doi.org/10.1111/j.1349-7006.2005.00105.x.

    Article  CAS  PubMed  Google Scholar 

  18. Lim JH, Park JW, Min DS, et al. NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis. 2007;12:411–21. https://doi.org/10.1007/s10495-006-0576-9.

    Article  CAS  PubMed  Google Scholar 

  19. Choi BH, Kim CG, Bae YS, Lim Y, Lee YH, Shin SY. p21 Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res. 2008;68(5):1369–77. https://doi.org/10.1158/0008-5472.can-07-5222.

    Article  CAS  PubMed  Google Scholar 

  20. Purohit V, Rapaka R, Kwon OS, Song BJ. Roles of alcohol and tobacco exposure in the development of hepatocellular carcinoma. Life Sci. 2013;92(1):3–9. https://doi.org/10.1016/j.lfs.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Grogan L, Nau MM, Allegra CJ, Chu E, Wright JJ. Physical interaction between p53 and primary response gene Egr-1. Int J Oncol. 2001;18(4):863–70. https://doi.org/10.3892/ijo.18.4.863.

    Article  CAS  PubMed  Google Scholar 

  22. Sauer L, Gitenay D, Vo C, Baron VT. Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene. 2010;29(18):2628–37. https://doi.org/10.1038/onc.2010.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eid MA, Kumar MV, Iczkowski KA, Bostwick DG, Tindall DJ. Expression of early growth response genes in human prostate cancer. Cancer Res. 1998;58(11):2461–8.

    CAS  PubMed  Google Scholar 

  24. Park SY, Kim JY, Lee SM, et al. Expression of early growth response gene-1 in precancerous lesions of gastric cancer. Oncol Lett. 2016;12:2710–5. https://doi.org/10.3892/ol.2016.4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwachtgen JL, Houston P, Campbell C, et al. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest. 1998;101:2540–9. https://doi.org/10.1172/jci1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burnatowska-Hledin MA, Kossoris JB, Van Dort CJ, et al. T47D breast cancer cell growth is inhibited by expression of VACM-1, a cul-5 gene. Biochem Biophys Res Commun. 2004;319:817–25. https://doi.org/10.1016/j.bbrc.2004.05.057.

    Article  CAS  PubMed  Google Scholar 

  27. Park SY, Kim JY, Lee SM, Chung JO, Lee KH, Jun CH, Lee YH. Expression of early growth response gene-1 in precancerous lesions of gastric cancer. Oncol Lett. 2016;12(4):2710–5. https://doi.org/10.3892/ol.2016.4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lei B, Sun S, Zhang X, Feng C, Xu J, Wen Y, Yu Y. Bisphenol AF exerts estrogenic activity in MCF-7cells through activation of Erk and PI3 K/Akt signals via GPER signaling pathway. Chemosphere. 2019;220:362–70. https://doi.org/10.1016/j.chemosphere.2018.12.122.

    Article  CAS  PubMed  Google Scholar 

  29. Stangelberger A, Schally AV, Varga JL, Zarandi M, Cai RZ, Baker B, Kanashiro CA. Inhibition of human androgen-independent PC-3 and DU-145 prostate cancers by antagonists of bombesin and growth hormone releasing hormone is linked to PKC, MAPK and c-jun intracellular signalling. Eur J Cancer. 2005;41(17):2735–44. https://doi.org/10.1016/j.ejca.2005.08.022.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao D, Chinnappan D, Pestell R, Albanese C, Weber HC. Bombesin regulates cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res. 2005;65(21):9934–42. https://doi.org/10.1158/0008-5472.can-05-1830.

    Article  CAS  PubMed  Google Scholar 

  31. Jablonski SA, Robinson-Drummer PA, Schreiber WB, Asok A. Impairment of the context preexposure facilitation effect in juvenile rats by neonatal alcohol exposure is associated with decreased Egr-1 mRNA expression in the prefrontal cortex. Behav Neurosci. 2018;132(6):497–511. https://doi.org/10.1037/bne0000272.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen YL, Lin PC, Chen SP, Lin CC, Tsai NM, Cheng YL, Harn HJ. Activation of nonsteroidal anti-inflammatory drug-activated gene-1 via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase revealed a isochaihulactone-triggered apoptotic pathway in human lung cancer A549 cells. J Pharmacol Exp Ther. 2007;323(2):746–56. https://doi.org/10.1124/jpet.107.126193.

    Article  CAS  PubMed  Google Scholar 

  33. Shin DY, Kim GY, Kim ND, Jung JH, Kim SK, Kang HS, Choi YH. Induction of apoptosis by pectenotoxin-2 is mediated with the induction of DR4/DR5, Egr-1 and NAG-1, activation of caspases and modulation of the Bcl-2 family in p53-deficient Hep3B hepatocellular carcinoma cells. Oncol Rep. 2008;19(2):517–26.

    CAS  PubMed  Google Scholar 

  34. Chintharlapalli S, Papineni S, Baek SJ, et al. 1,1-Bis(3’-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol. 2005;68:1782–92. https://doi.org/10.1124/mol.105.017046.

    Article  CAS  PubMed  Google Scholar 

  35. Moorehead RA, Hojilla CV, De Belle I, et al. Insulin-like growth factor-II regulates PTEN expression in the mammary gland. J Biol Chem. 2003;278:50422–7. https://doi.org/10.1074/jbc.m306894200.

    Article  CAS  PubMed  Google Scholar 

  36. Cesaratto L, Calligaris SD, Vascotto C, et al. Bilirubin-induced cell toxicity involves PTEN activation through an APE1/Ref-1-dependent pathway. J Mol Med (Berl). 2007;85:1099–112. https://doi.org/10.1007/s00109-007-0204-3.

    Article  CAS  Google Scholar 

  37. Pan L, Matloob AF, Du J, et al. Vitamin D stimulates apoptosis in gastric cancer cells in synergy with trichostatin A/sodium butyrate-induced and 5-aza-2’-deoxycytidine-induced PTEN upregulation. FEBS J. 2010;277:989–99. https://doi.org/10.1111/j.1742-4658.2009.07542.x.

    Article  CAS  PubMed  Google Scholar 

  38. Scheel C. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22:396–403. https://doi.org/10.1016/j.semcancer.2012.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Du J. High PKD2 predicts poor prognosis in lung adenocarcinoma via promoting Epithelial-mesenchymal Transition. Sci Rep. 2019;9(1):1324. https://doi.org/10.1038/s41598-018-37285-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuo PL, Chen YH, Chen TC, Shen KH, Hsu YL. CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway. J Cell Physiol. 2011;226(5):1224–31. https://doi.org/10.1002/jcp.22445.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng JC, Chang HM, Leung PC. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene. 2013;32(8):1041–9. https://doi.org/10.1038/onc.2012.127.

    Article  CAS  PubMed  Google Scholar 

  42. Forte E, Chimenti I, Rosa P, et al. EMT/MET at the crossroad of stemness, regeneration and oncogenesis: the Ying-Yang Equilibrium recapitulated in cell spheroids. Cancers (Basel). 2017. https://doi.org/10.3390/cancers9080098.

    Article  Google Scholar 

  43. Shao G, Liu Y, Ma T, et al. GCN5 inhibition prevents IL-6-induced prostate cancer metastases through PI3 K/PTEN/Akt signaling by inactivating Egr-1. Biosci Rep. 2018. https://doi.org/10.1042/bsr20180816.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang W, Xiong Y, Ding X, et al. Cathepsin L activated by mutant p53 and Egr-1 promotes ionizing radiation-induced EMT in human NSCLC. J Exp Clin Cancer Res. 2019;38:61. https://doi.org/10.1186/s13046-019-1054-x.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang LF, Liu YS, Yang B, Li P, Cheng XS, Xiao CX, Guleng B. The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene. 2018;37(5):601–15. https://doi.org/10.1038/onc.2017.359.

    Article  CAS  PubMed  Google Scholar 

  46. Ren B, Yee KO, Lawler J. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta. 2006;1765:178–88. https://doi.org/10.1016/j.bbcan.2005.11.002.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao HY, Ooyama A, Yamamoto M, et al. Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res. 2008;68:7035–41. https://doi.org/10.1158/0008-5472.can-07-6496.

    Article  CAS  PubMed  Google Scholar 

  48. Lucerna M, Pomyje J, Mechtcheriakova D, et al. Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Res. 2006;66:6708–13. https://doi.org/10.1158/0008-5472.can-05-2732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ganesan P, Matsubara K, Sugawara T. Marine algal carotenoids inhibit angiogenesis by down-regulating FGF-2-mediated intracellular signals in vascular endothelial cells. Mol Cell Biochem. 2013;380:1–9. https://doi.org/10.1007/s11010-013-1651-5.

    Article  CAS  PubMed  Google Scholar 

  50. Brown KC, Lau JK, Dom AM, et al. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 2012;15:99–114. https://doi.org/10.1007/s10456-011-9246-9.

    Article  CAS  PubMed  Google Scholar 

  51. Eyries M, Siegfried G, Ciumas M, et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res. 2008;103:432–40. https://doi.org/10.1161/circresaha.108.179333.

    Article  CAS  PubMed  Google Scholar 

  52. Shweiki D, Itin A, Soffer D. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5. https://doi.org/10.1038/359843a0.

    Article  CAS  PubMed  Google Scholar 

  53. Michiels C, Arnould T. Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta. 2000;1497:1–10.

    Article  CAS  Google Scholar 

  54. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:3721–32.

    Article  Google Scholar 

  55. Ji RC. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett. 2014;346(1):6–16. https://doi.org/10.1016/j.canlet.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

  56. Shimoyamada H, Yazawa T, Sato H, et al. Early growth response-1 induces and enhances vascular endothelial growth factor-A expression in lung cancer cells. Am J Pathol. 2010;177:70–83. https://doi.org/10.2353/ajpath.2010.091164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shin SY, Lee JM, Lim Y, Lee YH. Transcriptional regulation of the growth-regulated oncogene alpha gene by early growth response protein-1 in response to tumor necrosis factor alpha stimulation. Biochim Biophys Acta. 2013;1829(10):1066–74. https://doi.org/10.1016/j.bbagrm.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  58. Shin SY, Kim JH, Baker A, Lim Y, Lee YH. Transcription factor Egr-1 is essential for maximal matrix metalloproteinase-9 transcription by tumor necrosis factor alpha. Mol Cancer Res. 2010;8(4):507–19. https://doi.org/10.1158/1541-7786.mcr-09-0454.

    Article  CAS  PubMed  Google Scholar 

  59. Spencer JA, Major ML, Misra RP. Basic fibroblast growth factor activates serum response factor gene expression by multiple distinct signaling mechanisms. Mol Cell Biol. 1999;19(6):3977–88. https://doi.org/10.1128/mcb.19.6.3977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duan WR, Ito M, Park Y, Maizels ET, Hunzicker-Dunn M, Jameson JL. GnRH regulates early growth response protein 1 transcription through multiple promoter elements. Mol Endocrinol. 2002;16(2):221–33. https://doi.org/10.1210/mend.16.2.0779.

    Article  CAS  PubMed  Google Scholar 

  61. Datta R, Taneja N, Sukhatme VP, Qureshi SA, Weichselbaum R, Kufe DW. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci USA. 1993;90(6):2419–22. https://doi.org/10.1073/pnas.90.6.2419.

    Article  CAS  PubMed  Google Scholar 

  62. Seung LP, Mauceri HJ, Beckett MA, Hallahan DE, Hellman S, Weichselbaum RR. Genetic radiotherapy overcomes tumor resistance to cytotoxic agents. Cancer Res. 1995;55(23):5561–5.

    CAS  PubMed  Google Scholar 

  63. Bickenbach KA, Veerapong J, Shao MY, Mauceri HJ, Posner MC, Kron SJ, Weichselbaum RR. Resveratrol is an effective inducer of CArG-driven TNF-alpha gene therapy. Cancer Gene Ther. 2008;15(3):133–9. https://doi.org/10.1038/sj.cgt.7701103.

    Article  CAS  PubMed  Google Scholar 

  64. Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD. Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther. 2002;9(20):1403–11. https://doi.org/10.1038/sj.gt.3301823.

    Article  CAS  PubMed  Google Scholar 

  65. Wang WD, Li R, Chen ZT, Li DZ, Duan YZ, Cao ZH. Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Sci. 2005;96(10):706–12. https://doi.org/10.1111/j.1349-7006.2005.00105.x.

    Article  CAS  PubMed  Google Scholar 

  66. Chen A, Xu J. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene. 2006;25:278–87. https://doi.org/10.1038/sj.onc.1209019.

    Article  CAS  PubMed  Google Scholar 

  67. Chen QY, Jiao DM, Wang LF, et al. Curcumin inhibits proliferation-migration of NSCLC by steering crosstalk between a Wnt signaling pathway and an adherens junction via EGR-1. Mol BioSyst. 2015;11:859–68. https://doi.org/10.1039/c4mb00336e.

    Article  CAS  PubMed  Google Scholar 

  68. Yang MH, Kim J, Khan IA, et al. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci. 2014;100:75–84. https://doi.org/10.1016/j.lfs.2014.01.075.

    Article  CAS  PubMed  Google Scholar 

  69. Jeung YJ, Kim HG, Ahn J, et al. Shikonin induces apoptosis of lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling antagonized by p300. Biochim Biophys Acta. 2016;1863:2584–93. https://doi.org/10.1016/j.bbamcr.2016.07.005.

    Article  CAS  PubMed  Google Scholar 

  70. Xia Y, Lian S, Khoi PN, et al. Chrysin inhibits cell invasion by inhibition of Recepteur d’origine Nantais via suppressing early growth response-1 and NF-κB transcription factor activities in gastric cancer cells. Int J Oncol. 2015;46:1835–43. https://doi.org/10.3892/ijo.2015.2847.

    Article  CAS  PubMed  Google Scholar 

  71. Han MH, Kim GY, Yoo YH. Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol Lett. 2013;220:157–66. https://doi.org/10.1016/j.toxlet.2013.04.020.

    Article  CAS  PubMed  Google Scholar 

  72. Zcharia E, Atzmon R, Nagler A, et al. Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs. 2012;23:1022–31. https://doi.org/10.1097/cad.0b013e328357d186.

    Article  CAS  PubMed  Google Scholar 

  73. Baek SJ, Kim JS, Nixon JB, et al. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem. 2004;279:6883–92. https://doi.org/10.1074/jbc.m305295200.

    Article  CAS  PubMed  Google Scholar 

  74. Baek SJ, Kim JS, Nixon JB, et al. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem. 2004;279(8):6883–92. https://doi.org/10.1074/jbc.m305295200.

    Article  CAS  PubMed  Google Scholar 

  75. Chen YL, Lin PC, Chen SP, et al. Activation of nonsteroidal anti-inflammatory drug-activated gene-1 via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase revealed a isochaihulactone-triggered apoptotic pathway in human lung cancer A549 cells. J Pharmacol Exp Ther. 2007;323:746–56. https://doi.org/10.1124/jpet.107.126193.

    Article  CAS  PubMed  Google Scholar 

  76. Chiu SC, Wang MJ, Yang HH, et al. Activation of NAG-1 via JNK signaling revealed an isochaihulactone-triggered cell death in human LNCaP prostate cancer cells. BMC Cancer. 2011;11:146. https://doi.org/10.1186/1471-2407-11-146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shin DY, Kim GY, Li W, et al. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomed Pharmacother. 2009;63:86–94. https://doi.org/10.1016/j.biopha.2008.08.001.

    Article  CAS  PubMed  Google Scholar 

  78. Auyeung KK. Coptis chinensis inhibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation. Int J Mol Med. 2009;24:571–7.

    CAS  PubMed  Google Scholar 

  79. Shin SY, Kim JH, Lee JH, et al. 2’-Hydroxyflavanone induces apoptosis through Egr-1 involving expression of Bax, p21, and NAG-1 in colon cancer cells. Mol Nutr Food Res. 2012;56:761–74. https://doi.org/10.1002/mnfr.201100651.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81572349, 81872080), Jiangsu Provincial Medical Talent (ZDRCA2016055), the Science and Technology Department of Jiangsu Province (BK20181148) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-sheng Pei.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Tt., Liu, Mr. & Pei, Ds. Friend or foe, the role of EGR-1 in cancer. Med Oncol 37, 7 (2020). https://doi.org/10.1007/s12032-019-1333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-019-1333-6

Keywords

Navigation