Skip to main content
Log in

Everolimus in combination with Imatinib overcomes resistance in Chronic myeloid leukaemia

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although Imatinib and other tyrosine kinase inhibitors (TKIs) have excellent results, the appearance of resistance is a problem in chronic myeloid leukaemia (CML). PI3K/AKT/mTOR pathway is activated by BCR-ABL playing a crucial rule in CML. This study aimed to evaluate the therapeutic potential of Everolimus, in CML models sensitive and resistant to Imatinib. We used one CML cell line sensitive to Imatinib (K562) and two resistant (K562-RC and K56-RD). Cell lines were treated with Everolimus alone and in combination with Imatinib. Cell viability was analysed by resazurin assay. Cell death and cell cycle were analysed by flow cytometry. Additionally, we also studied peripheral blood samples obtained from 52 patients under TKI treatment. Everolimus reduced cell line viability in sensitive (IC50 = 20 µM) and resistant models (K562-RC, IC50 = 25 µM; K562-RD, IC50 = 30 µM). This drug induced cell death by apoptosis and cell cycle arrest in G0/G1 phase. Everolimus also reduced cell viability by increasing apoptosis of haematopoietic stem cells (CD34+ cells) with low cytotoxicity to lymphocytes. Everolimus at 25 µM increased apoptotic cells 18.7% in CD34+ cells and only 8% in lymphocytes. The response to Everolimus was influenced by TKI treatment, with a better response in samples from patients under 2nd and 3rd generation TKI and with less toxicity to lymphocytes. Our results reveal that Everolimus induce cell death in CML cells sensitive and resistant to Imatinib, with low cytotoxicity to normal cells, suggesting that Everolimus could be an alternative targeted therapeutic approach in CML patients, even in cases of Imatinib resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali MAM. Chronic myeloid leukemia in the era of tyrosine kinase inhibitors: an evolving paradigm of molecularly targeted therapy. Mol Diagn Therapy. 2016;20(4):315–33. https://doi.org/10.1007/s40291-016-0208-1.

    Article  CAS  Google Scholar 

  2. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol. 2016;91:252–65. https://doi.org/10.1002/ajh.24275.

    Article  CAS  PubMed  Google Scholar 

  3. Frazer R, Irvine AE, McMullin MF. Chronic myeloid leukaemia in the 21st century. Ulster Med J. 2007;76(1):8–17.

    PubMed  PubMed Central  Google Scholar 

  4. Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG. BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol. 2011;4(1):6. https://doi.org/10.1186/1756-8722-4-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alves R, Fonseca AR, Gonçalves AC, Ferreira-Teixeira M, Lima J, Abrantes AM, et al. Drug transporters play a key role in the complex process of Imatinib resistance in vitro. Leuk Res. 2015;39(3):355–60. https://doi.org/10.1016/j.leukres.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  6. Hassan B, Akcakanat A, Holder AM, Meric-Bernstam F. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin. 2013;22(4):641–64. https://doi.org/10.1016/j.soc.2013.06.008.

    Article  Google Scholar 

  7. Efeyan A, Sabatini DM. mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 2010;22(2):169–76. https://doi.org/10.1016/j.ceb.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  8. Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 2015;72(12):2337–47. https://doi.org/10.1007/s00018-015-1867-5.

    Article  CAS  PubMed  Google Scholar 

  9. Dinner S, Platanias LC. Targeting the mTOR pathway in leukemia. J Cell Biochem. 2016;117(8):1745–52. https://doi.org/10.1002/jcb.25559.

    Article  CAS  PubMed  Google Scholar 

  10. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Müller-Brüsselbach S, et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia. 2005;19:1774–82. https://doi.org/10.1038/sj.leu.2403898. https://www.nature.com/articles/2403898#supplementary-information.

  11. Mitchell R, Hopcroft LEM, Baquero P, Allan EK, Hewit K, James D, et al. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. JNCI: J Natl Cancer Inst. 2017:djx236–djx. https://doi.org/10.1093/jnci/djx236.

  12. Zaytseva YY, Valentino JD, Gulhati P, Mark Evers B. mTOR inhibitors in cancer therapy. Cancer Lett. 2012;319(1):1–7. https://doi.org/10.1016/j.canlet.2012.01.005.

    Article  CAS  PubMed  Google Scholar 

  13. Yee KWL, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12(17):5165–73. https://doi.org/10.1158/1078-0432.ccr-06-0764.

    Article  CAS  PubMed  Google Scholar 

  14. Mendes J, Gonçalves AC, Alves R, Jorge J, Pires A, Ribeiro A, et al. L744,832 and everolimus induce cytotoxic and cytostatic effects in non-hodgkin lymphoma cells. Pathol Oncol Res. 2016;22(2):301–9. https://doi.org/10.1007/s12253-015-9998-4.

    Article  CAS  PubMed  Google Scholar 

  15. Chou T. The median-effect principle and the combination index for quantitation of synergism and antagonism. Synergism and antagonism in chemotherapy. San Diego: Academic Press; 1991. pp. 61–102.

    Google Scholar 

  16. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  Google Scholar 

  17. Jiang B-H, Liu L-Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updates. 2008;11(3):63–76. https://doi.org/10.1016/j.drup.2008.03.001.

    Article  CAS  Google Scholar 

  18. Eide CA, Bottomly D, Savage SL, White L, Wilmot B, Reister Schultz AM, et al. Characterization of the genomic landscape of BCR-ABL1 kinase-independent mechanisms of resistance to ABL1 tyrosine kinase inhibitors in chronic myeloid leukemia. Blood. 2016;128(22):1119-.

    Google Scholar 

  19. Cortes JE, Kim D-W, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in philadelphia chromosome–positive leukemias. N Engl J Med. 2013;369(19):1783–96. https://doi.org/10.1056/NEJMoa1306494.

    Article  CAS  Google Scholar 

  20. Mancini M, Petta S, Martinelli G, Barbieri E, Santucci MA. RAD 001 (everolimus) prevents mTOR and Akt late re-activation in response to imatinib in chronic myeloid leukemia. J Cell Biochem. 2010;109(2):320–8. https://doi.org/10.1002/jcb.22380.

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, He G, Gong Y, Zheng B, Shi F, Shi R, et al. Mammalian target of rapamycin inhibitor rapamycin enhances anti-leukemia effect of imatinib on Ph + acute lymphoblastic leukemia cells. Eur J Haematol. 2014;92(2):111–20. https://doi.org/10.1111/ejh.12202. doi.

    Article  CAS  PubMed  Google Scholar 

  22. Zeng Z, Sarbassov DD, Samudio IJ, Yee KWL, Munsell MF, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 2007;109(8):3509–12. https://doi.org/10.1182/blood-2006-06-030833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edinger AL, Linardic CM, Chiang GG, Thompson CB, Abraham RT. Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Can Res. 2003;63(23):8451–60.

    CAS  Google Scholar 

  24. Morotti A, Panuzzo C, Crivellaro S, Carrà G, Fava C, Guerrasio A, et al. BCR-ABL inactivates cytosolic PTEN through casein kinase II mediated tail phosphorylation. Cell Cycle. 2015;14(7):973–9. https://doi.org/10.1080/15384101.2015.1006970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin AG, et al. PTEN is a tumor suppressor in CML stem cells and BCR-ABL–induced leukemias in mice. Blood. 2010;115(3):626–35. https://doi.org/10.1182/blood-2009-06-228130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia P, Xu X-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sunayama J, Matsuda K-I, Sato A, Tachibana K, Suzuki K, Narita Y, et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways Involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells. 2010;28(11):1930–9. https://doi.org/10.1002/stem.521.

    Article  CAS  PubMed  Google Scholar 

  28. Tasian SK, Teachey DT, Rheingold SR. Targeting the PI3K/mTOR pathway in pediatric hematologic malignancies. Front Oncol. 2014;4:108. https://doi.org/10.3389/fonc.2014.00108.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Récher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM-D, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood. 2005;105(6):2527–34. https://doi.org/10.1182/blood-2004-06-2494.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–34. https://doi.org/10.1038/nm0901-1028.

    Article  CAS  PubMed  Google Scholar 

  31. Bleau A-M, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35. https://doi.org/10.1016/j.stem.2009.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang F-F, Wu D-S, Zhang L, Yu Y-H, Yuan X-Y, Li W-J, et al. Inactivation of PTEN increases ABCG2 expression and the side population through the PI3K/Akt pathway in adult acute leukemia. Cancer Lett. 2013;336(1):96–105. https://doi.org/10.1016/j.canlet.2013.04.006.

    Article  CAS  PubMed  Google Scholar 

  33. Huang F-F, Zhang L, Wu D-S, Yuan X-Y, Chen F-P, Zeng H, et al. PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PLoS ONE. 2014;9(3):e88298. https://doi.org/10.1371/journal.pone.0088298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hegedüs C, Truta-Feles K, Antalffy G, Brózik A, Kasza I, Német K, et al. PI3-kinase and mTOR inhibitors differently modulate the function of the ABCG2 multidrug transporter. Biochem Biophys Res Commun. 2012;420(4):869–74. https://doi.org/10.1016/j.bbrc.2012.03.090.

    Article  CAS  PubMed  Google Scholar 

  35. Sinclair A, Latif AL, Holyoake TL. Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol. 2013;169(8):1693–707. https://doi.org/10.1111/bph.12183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present work was supported by CIMAGO—Center of Investigation on Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Portugal (Project 18/12), by funds from FEDER through the Operational Program Competitiveness Factors—COMPETE, and by Portuguese funds through FCT—Foundation for Science and Technology—under the strategic projects from FCT/MCTES/PIDDAC (CNC.IBILI, Center Reference: UID/NEU/04539/2013). RA was supported by Portuguese Foundation to Science and Technology (FCT) with a PhD Grant (SFRH/BD/51994/2012).

Author information

Authors and Affiliations

Authors

Contributions

RA, AA, and ABSR designed the experiments. RA and ACG drafted the manuscript. RA, ACG, and JJ performed the experiments. JA and AAS executed the statistical analyses. PFT recruited and provided the clinical information of the participants. JNC, AA, and ABSR revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana B. Sarmento-Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, R., Gonçalves, A.C., Jorge, J. et al. Everolimus in combination with Imatinib overcomes resistance in Chronic myeloid leukaemia. Med Oncol 36, 30 (2019). https://doi.org/10.1007/s12032-019-1253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-019-1253-5

Keywords

Navigation