Skip to main content

Advertisement

Log in

DNA methylation marker to estimate the breast cancer cell fraction in DNA samples

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Estimation of the cancer cell fraction in breast cancer tissue is important for exclusion of samples unsuitable for multigene prognostic assays and a variety of molecular analyses for research. Here, we aimed to establish a breast cancer cell fraction marker based on DNA methylation. First, we screened genes unmethylated in non-cancerous mammary tissues and methylated in breast cancer tissues using microarray data from the TCGA database, and isolated 12 genes. Among them, four genes were selected as candidate marker genes without a high incidence of copy number alterations and with broad coverage across patients. Bisulfite pyrosequencing analysis of additional breast cancer biopsy specimens purified by laser capture microdissection (LCM) excluded two genes, and a combination of SIM1 and CCDC181 was finally selected as a fraction marker. In further additional specimens without LCM purification, the fraction marker was substantially methylated (≥ 20%) with high incidence (50/51). The cancer cell fraction estimated by the fraction marker was significantly correlated with that estimated by microscopic examination (p < 0.0001). Performance of a previously established marker, HSD17B4 methylation, which predicts therapeutic response of HER2-positive breast cancer to trastuzumab, was improved after the correction of cancer cell fraction by the fraction marker. In conclusion, we successfully established a breast cancer cell fraction marker based on DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11(10):685–96. https://doi.org/10.1038/nrg2841.

    Article  CAS  PubMed  Google Scholar 

  2. Gusnanto A, Wood HM, Pawitan Y, Rabbitts P, Berri S. Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics. 2012;28(1):40–7. https://doi.org/10.1093/bioinformatics/btr593.

    Article  CAS  PubMed  Google Scholar 

  3. Roma C, Esposito C, Rachiglio AM, Pasquale R, Iannaccone A, Chicchinelli N, et al. Detection of EGFR mutations by TaqMan mutation detection assays powered by competitive allele-specific TaqMan PCR technology. BioMed Res Int. 2013;2013:385087. https://doi.org/10.1155/2013/385087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yau C, Mouradov D, Jorissen RN, Colella S, Mirza G, Steers G, et al. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol. 2010;11(9):R92. https://doi.org/10.1186/gb-2010-11-9-r92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi T, Matsuda Y, Yamashita S, Hattori N, Kushima R, Lee YC, et al. Estimation of the fraction of cancer cells in a tumor DNA sample using DNA methylation. PloS ONE. 2013;8(12):e82302. https://doi.org/10.1371/journal.pone.0082302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zong L, Hattori N, Yoda Y, Yamashita S, Takeshima H, Takahashi T, et al. Establishment of a DNA methylation marker to evaluate cancer cell fraction in gastric cancer. Gastric Cancer. 2016;19(2):361–9. https://doi.org/10.1007/s10120-015-0475-2.

    Article  CAS  PubMed  Google Scholar 

  7. Heller G, Babinsky VN, Ziegler B, Weinzierl M, Noll C, Altenberger C, et al. Genome-wide CpG island methylation analyses in non-small cell lung cancer patients. Carcinogenesis. 2013;34(3):513–21. https://doi.org/10.1093/carcin/bgs363.

    Article  CAS  PubMed  Google Scholar 

  8. Shen J, Wang S, Zhang YJ, Wu HC, Kibriya MG, Jasmine F, et al. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics. 2013;8(1):34–43. https://doi.org/10.4161/epi.23062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Y, Davison J, Qu X, Morrissey C, Storer B, Brown L, et al. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer. Epigenetics. 2016;11(4):247–58. https://doi.org/10.1080/15592294.2016.1148867.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harada T, Yamamoto E, Yamano HO, Nojima M, Maruyama R, Kumegawa K, et al. Analysis of DNA methylation in bowel lavage fluid for detection of colorectal cancer. Cancer Prev Res (Philadelphia). 2014;7(10):1002–10. https://doi.org/10.1158/1940-6207.Capr-14-0162.

    Article  CAS  Google Scholar 

  11. Okamoto Y, Sawaki A, Ito S, Nishida T, Takahashi T, Toyota M, et al. Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. Gut. 2012;61(3):392–401. https://doi.org/10.1136/gut.2011.241034.

    Article  CAS  PubMed  Google Scholar 

  12. Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res. 2006;12(22):6626–36. https://doi.org/10.1158/1078-0432.Ccr-06-0467.

    Article  CAS  PubMed  Google Scholar 

  13. Stirzaker C, Zotenko E, Song JZ, Qu W, Nair SS, Locke WJ, et al. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun. 2015;6:5899. https://doi.org/10.1038/ncomms6899.

    Article  CAS  PubMed  Google Scholar 

  14. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26. https://doi.org/10.1056/NEJMoa041588.

    Article  CAS  PubMed  Google Scholar 

  15. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116(2):295–302. https://doi.org/10.1007/s10549-008-0130-2.

    Article  CAS  PubMed  Google Scholar 

  16. Fujii S, Yamashita S, Yamaguchi T, Takahashi M, Hozumi Y, Ushijima T, et al. Pathological complete response of HER2-positive breast cancer to trastuzumab and chemotherapy can be predicted by HSD17B4 methylation. Oncotarget. 2017;8(12):19039–48. https://doi.org/10.18632/oncotarget.15118.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shigematsu Y, Niwa T, Yamashita S, Taniguchi H, Kushima R, Katai H, et al. Identification of a DNA methylation marker that detects the presence of lymph node metastases of gastric cancers. Oncol Lett. 2012;4(2):268–74. https://doi.org/10.3892/ol.2012.708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamashita S, Takahashi S, McDonell N, Watanabe N, Niwa T, Hosoya K, et al. Methylation silencing of transforming growth factor-beta receptor type II in rat prostate cancers. Cancer Res. 2008;68(7):2112–21. https://doi.org/10.1158/0008-5472.can-07-5282.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, et al. Alu and Satalpha hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer. 2011;128(1):33–9. https://doi.org/10.1002/ijc.25534.

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi T, Yamahsita S, Matsuda Y, Kishino T, Nakajima T, Kushima R, et al. ZNF695 methylation predicts a response of esophageal squamous cell carcinoma to definitive chemoradiotherapy. J Cancer Res Clin Oncol. 2015;141(3):453–63. https://doi.org/10.1007/s00432-014-1841-x.

    Article  CAS  PubMed  Google Scholar 

  21. Gyobu K, Yamashita S, Matsuda Y, Igaki H, Niwa T, Oka D, et al. Identification and validation of DNA methylation markers to predict lymph node metastasis of esophageal squamous cell carcinomas. Ann Surg Oncol. 2011;18(4):1185–94. https://doi.org/10.1245/s10434-010-1393-5.

    Article  PubMed  Google Scholar 

  22. Robinson MD, Stirzaker C, Statham AL, Coolen MW, Song JZ, Nair SS, et al. Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification bias, and copy number variation. Genome Res. 2010;20(12):1719–29. https://doi.org/10.1101/gr.110601.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung SH, Lee A, Yim SH, Hu HJ, Choe C, Chung YJ. Simultaneous copy number gains of NUPR1 and ERBB2 predicting poor prognosis in early-stage breast cancer. BMC Cancer. 2012;12:382. https://doi.org/10.1186/1471-2407-12-382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song S, Nones K, Miller D, Harliwong I, Kassahn KS, Pinese M, et al. qpure: a tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PloS ONE. 2012;7(9):e45835. https://doi.org/10.1371/journal.pone.0045835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su X, Zhang L, Zhang J, Meric-Bernstam F, Weinstein JN. PurityEst: estimating purity of human tumor samples using next-generation sequencing data. Bioinformatics. 2012;28(17):2265–6. https://doi.org/10.1093/bioinformatics/bts365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nat Rev Cancer. 2018;18(1):19–32. https://doi.org/10.1038/nrc.2017.102.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A, et al. Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res. 2008;68(6):1786–96. https://doi.org/10.1158/0008-5472.Can-07-5547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baba Y, Ishimoto T, Kurashige J, Iwatsuki M, Sakamoto Y, Yoshida N, et al. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett. 2016;375(2):360–6. https://doi.org/10.1016/j.canlet.2016.03.009.

    Article  CAS  PubMed  Google Scholar 

  29. Asada K, Nakajima T, Shimazu T, Yamamichi N, Maekita T, Yokoi C, et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. Gut. 2015;64(3):388–96. https://doi.org/10.1136/gutjnl-2014-307094.

    Article  CAS  PubMed  Google Scholar 

  30. Asada K, Ando T, Niwa T, Nanjo S, Watanabe N, Okochi-Takada E, et al. FHL1 on chromosome X is a single-hit gastrointestinal tumor-suppressor gene and contributes to the formation of an epigenetic field defect. Oncogene. 2013;32(17):2140–9. https://doi.org/10.1038/onc.2012.228.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. K. Ichimura, Y. Matsushita, and M. Kitahara of Division of Brain Tumor Translational Research in the National Cancer Center Research Institute for their technical assistance with the usage of the PSQ 96 Pyrosequencing System.

Funding

This research was supported by the Program for Promoting Platform of Genomics based Drug Discovery (Grant Number 18kk0305004h0003) from the Japan Agency for Medical Research and Development, AMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Ushijima.

Ethics declarations

Conflict of interest

The authors state no conflicts of interest regarding this work.

Ethical approval

Written informed consent was obtained from all participants.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, H., Yamashita, S., Fujii, S. et al. DNA methylation marker to estimate the breast cancer cell fraction in DNA samples. Med Oncol 35, 147 (2018). https://doi.org/10.1007/s12032-018-1207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1207-3

Keywords

Navigation